import torch from PIL import Image import requests import openai from transformers import (Owlv2Processor, Owlv2ForObjectDetection, AutoProcessor, AutoModelForMaskGeneration, BlipProcessor, BlipForConditionalGeneration) import matplotlib.pyplot as plt import matplotlib.patches as patches import base64 import io import numpy as np import gradio as gr import json import os from dotenv import load_dotenv # Load environment variables load_dotenv() OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY def generate_image_caption(image): device = 'cuda' if torch.cuda.is_available() else 'cpu' processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base') model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to(device) inputs = processor(image, return_tensors='pt').to(device) out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption def analyze_caption(caption): messages = [ { "role": "user", "content": f"""Your task is to determine if the following image description is surprising or not surprising. Description: "{caption}" If the description is surprising, determine which element, figure, or object is making it surprising and write it only in one sentence with no more than 6 words; otherwise, write 'NA'. Also, rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising. Provide the response as a JSON with the following structure: {{ "label": "[surprising OR not surprising]", "element": "[element]", "rating": [1-5] }} """ } ] response = openai.ChatCompletion.create( model="gpt-4", messages=messages, max_tokens=100, temperature=0.1 ) return response.choices[0].message.content # The rest of your functions (process_image_detection, show_mask, etc.) remain the same def process_and_analyze(image): if image is None: return None, "Please upload an image first." if OPENAI_API_KEY is None: return None, "OpenAI API key not found in environment variables." try: # Handle different input types if isinstance(image, tuple): image = image[0] # Take the first element if it's a tuple if isinstance(image, np.ndarray): image = Image.fromarray(image) if not isinstance(image, Image.Image): raise ValueError("Invalid image format") # Generate caption caption = generate_image_caption(image) # Analyze caption gpt_response = analyze_caption(caption) response_data = json.loads(gpt_response) if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na": result_buf = process_image_detection(image, response_data["element"], response_data["rating"]) result_image = Image.open(result_buf) analysis_text = f"Label: {response_data['label']}\nElement: {response_data['element']}\nRating: {response_data['rating']}/5" return result_image, analysis_text else: return image, "Not Surprising" except Exception as e: return None, f"Error processing image: {str(e)}" # Create Gradio interface remains the same if __name__ == "__main__": demo = create_interface() demo.launch()