Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -143,168 +143,173 @@ def show_mask(mask, ax, random_color=False):
|
|
143 |
|
144 |
|
145 |
def process_image_detection(image, target_label, surprise_rating):
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
def process_and_analyze(image):
|
310 |
if image is None:
|
|
|
143 |
|
144 |
|
145 |
def process_image_detection(image, target_label, surprise_rating):
|
146 |
+
try:
|
147 |
+
# Handle different image input types
|
148 |
+
if isinstance(image, tuple):
|
149 |
+
if len(image) > 0 and image[0] is not None:
|
150 |
+
if isinstance(image[0], np.ndarray):
|
151 |
+
image = Image.fromarray(image[0])
|
152 |
+
else:
|
153 |
+
image = image[0]
|
154 |
+
else:
|
155 |
+
raise ValueError("Invalid image tuple provided")
|
156 |
+
elif isinstance(image, np.ndarray):
|
157 |
+
image = Image.fromarray(image)
|
158 |
+
elif isinstance(image, str):
|
159 |
+
image = Image.open(image)
|
160 |
+
|
161 |
+
# Ensure image is in PIL Image format
|
162 |
+
if not isinstance(image, Image.Image):
|
163 |
+
raise ValueError(f"Input must be a PIL Image, got {type(image)}")
|
164 |
+
|
165 |
+
# Ensure image is in RGB mode
|
166 |
+
if image.mode != 'RGB':
|
167 |
+
image = image.convert('RGB')
|
168 |
+
|
169 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
170 |
+
print(f"Using device: {device}")
|
171 |
+
|
172 |
+
# Get original image DPI and size
|
173 |
+
original_dpi = image.info.get('dpi', (72, 72))
|
174 |
+
original_size = image.size
|
175 |
+
print(f"Image size: {original_size}")
|
176 |
+
|
177 |
+
# Calculate relative font size based on image dimensions
|
178 |
+
base_fontsize = min(original_size) / 40
|
179 |
+
|
180 |
+
print("Loading models...")
|
181 |
+
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
182 |
+
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
183 |
+
sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
|
184 |
+
sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-base").to(device)
|
185 |
+
|
186 |
+
print("Running object detection...")
|
187 |
+
inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device)
|
188 |
+
with torch.no_grad():
|
189 |
+
outputs = owlv2_model(**inputs)
|
190 |
+
|
191 |
+
target_sizes = torch.tensor([image.size[::-1]]).to(device)
|
192 |
+
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
|
193 |
+
|
194 |
+
dpi = 300
|
195 |
+
figsize = (original_size[0] / dpi, original_size[1] / dpi)
|
196 |
+
fig = plt.figure(figsize=figsize, dpi=dpi)
|
197 |
+
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
198 |
+
fig.add_axes(ax)
|
199 |
+
ax.imshow(image)
|
200 |
+
|
201 |
+
scores = results["scores"]
|
202 |
+
if len(scores) > 0:
|
203 |
+
max_score_idx = scores.argmax().item()
|
204 |
+
max_score = scores[max_score_idx].item()
|
205 |
+
|
206 |
+
if max_score > 0.2:
|
207 |
+
print("Processing detection results...")
|
208 |
+
box = results["boxes"][max_score_idx].cpu().numpy()
|
209 |
+
|
210 |
+
print("Running SAM model...")
|
211 |
+
# Convert image to numpy array if needed for SAM
|
212 |
+
if isinstance(image, Image.Image):
|
213 |
+
image_np = np.array(image)
|
214 |
+
else:
|
215 |
+
image_np = image
|
216 |
+
|
217 |
+
sam_inputs = sam_processor(
|
218 |
+
image_np,
|
219 |
+
input_boxes=[[[box[0], box[1], box[2], box[3]]]],
|
220 |
+
return_tensors="pt"
|
221 |
+
).to(device)
|
222 |
+
|
223 |
+
with torch.no_grad():
|
224 |
+
sam_outputs = sam_model(**sam_inputs)
|
225 |
+
|
226 |
+
masks = sam_processor.image_processor.post_process_masks(
|
227 |
+
sam_outputs.pred_masks.cpu(),
|
228 |
+
sam_inputs["original_sizes"].cpu(),
|
229 |
+
sam_inputs["reshaped_input_sizes"].cpu()
|
230 |
+
)
|
231 |
+
|
232 |
+
print(f"Mask type: {type(masks)}, Mask shape: {len(masks)}")
|
233 |
+
mask = masks[0]
|
234 |
+
if isinstance(mask, torch.Tensor):
|
235 |
+
mask = mask.numpy()
|
236 |
+
|
237 |
+
show_mask(mask, ax=ax)
|
238 |
+
|
239 |
+
rect = patches.Rectangle(
|
240 |
+
(box[0], box[1]),
|
241 |
+
box[2] - box[0],
|
242 |
+
box[3] - box[1],
|
243 |
+
linewidth=max(2, min(original_size) / 500),
|
244 |
+
edgecolor='red',
|
245 |
+
facecolor='none'
|
246 |
+
)
|
247 |
+
ax.add_patch(rect)
|
248 |
+
|
249 |
+
plt.text(
|
250 |
+
box[0], box[1] - base_fontsize,
|
251 |
+
f'{max_score:.2f}',
|
252 |
+
color='red',
|
253 |
+
fontsize=base_fontsize,
|
254 |
+
fontweight='bold',
|
255 |
+
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2)
|
256 |
+
)
|
257 |
+
|
258 |
+
plt.text(
|
259 |
+
box[2] + base_fontsize / 2, box[1],
|
260 |
+
f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}',
|
261 |
+
color='red',
|
262 |
+
fontsize=base_fontsize,
|
263 |
+
fontweight='bold',
|
264 |
+
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2),
|
265 |
+
verticalalignment='bottom'
|
266 |
+
)
|
267 |
+
|
268 |
+
plt.axis('off')
|
269 |
+
|
270 |
+
print("Saving final image...")
|
271 |
+
try:
|
272 |
+
# Save directly to buffer using savefig
|
273 |
+
buf = io.BytesIO()
|
274 |
+
fig.savefig(buf,
|
275 |
+
format='png',
|
276 |
+
dpi=dpi,
|
277 |
+
bbox_inches='tight',
|
278 |
+
pad_inches=0)
|
279 |
+
buf.seek(0)
|
280 |
+
|
281 |
+
# Open as PIL Image
|
282 |
+
output_image = Image.open(buf)
|
283 |
+
|
284 |
+
# Convert to RGB if needed
|
285 |
+
if output_image.mode != 'RGB':
|
286 |
+
output_image = output_image.convert('RGB')
|
287 |
+
|
288 |
+
# Resize to original size if needed
|
289 |
+
if output_image.size != original_size:
|
290 |
+
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
|
291 |
+
|
292 |
+
# Save to final buffer
|
293 |
+
final_buf = io.BytesIO()
|
294 |
+
output_image.save(final_buf, format='PNG', dpi=original_dpi)
|
295 |
+
final_buf.seek(0)
|
296 |
+
|
297 |
+
# Cleanup
|
298 |
+
plt.close(fig)
|
299 |
+
buf.close()
|
300 |
+
|
301 |
+
return final_buf
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
print(f"Save error details: {str(e)}")
|
305 |
+
print(f"Figure type: {type(fig)}")
|
306 |
+
print(f"Canvas type: {type(fig.canvas)}")
|
307 |
+
raise
|
308 |
+
|
309 |
+
except Exception as e:
|
310 |
+
print(f"Process image detection error: {str(e)}")
|
311 |
+
print(f"Error occurred at line {e.__traceback__.tb_lineno}")
|
312 |
+
raise
|
313 |
|
314 |
def process_and_analyze(image):
|
315 |
if image is None:
|