reab5555's picture
Update app.py
4c9f62d verified
raw
history blame
10.5 kB
import torch
from PIL import Image
import requests
from openai import OpenAI
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
AutoProcessor, AutoModelForMaskGeneration)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import base64
import io
import numpy as np
import gradio as gr
import json
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
def encode_image_to_base64(image):
# If image is a tuple (as sometimes provided by Gradio), take the first element
if isinstance(image, tuple):
if len(image) > 0 and image[0] is not None:
image = image[0]
else:
raise ValueError("Invalid image tuple provided")
# If image is a numpy array, convert to PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# If image is a path string, open it
elif isinstance(image, str):
image = Image.open(image)
# Ensure image is in PIL Image format
if not isinstance(image, Image.Image):
raise ValueError("Input must be a PIL Image, numpy array, or valid image path")
# Convert image to RGB if it's in RGBA mode
if image.mode == 'RGBA':
image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def analyze_image(image):
client = OpenAI(api_key=OPENAI_API_KEY)
base64_image = encode_image_to_base64(image)
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": """Your task is to determine if the image is surprising or not surprising.
if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'.
Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
Provide the response as a JSON with the following structure:
{
"label": "[surprising OR not surprising]",
"element": "[element]",
"rating": [1-5]
}"""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
]
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
max_tokens=100,
temperature=0.1,
response_format={
"type": "json_object"
}
)
return response.choices[0].message.content
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([1.0, 0.0, 0.0, 0.5])
if len(mask.shape) == 4:
mask = mask[0, 0]
mask_image = np.zeros((*mask.shape, 4), dtype=np.float32)
mask_image[mask > 0] = color
ax.imshow(mask_image)
def process_image_detection(image, target_label, surprise_rating):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Get original image DPI and size
original_dpi = image.info.get('dpi', (72, 72))
original_size = image.size
# Calculate relative font size based on image dimensions
base_fontsize = min(original_size) / 40 # Adjust this divisor to change overall font size
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-base").to(device)
image_np = np.array(image)
inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = owlv2_model(**inputs)
target_sizes = torch.tensor([image.size[::-1]]).to(device)
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
dpi = 300 # Increased DPI for better text rendering
figsize = (original_size[0] / dpi, original_size[1] / dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
fig.add_axes(ax)
plt.imshow(image)
scores = results["scores"]
if len(scores) > 0:
max_score_idx = scores.argmax().item()
max_score = scores[max_score_idx].item()
if max_score > 0.2:
box = results["boxes"][max_score_idx].cpu().numpy()
sam_inputs = sam_processor(
image,
input_boxes=[[[box[0], box[1], box[2], box[3]]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
sam_outputs = sam_model(**sam_inputs)
masks = sam_processor.image_processor.post_process_masks(
sam_outputs.pred_masks.cpu(),
sam_inputs["original_sizes"].cpu(),
sam_inputs["reshaped_input_sizes"].cpu()
)
mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0]
show_mask(mask, ax=ax)
# Draw rectangle with increased line width
rect = patches.Rectangle(
(box[0], box[1]),
box[2] - box[0],
box[3] - box[1],
linewidth=max(2, min(original_size) / 500), # Scale line width with image size
edgecolor='red',
facecolor='none'
)
ax.add_patch(rect)
# Add confidence score with improved visibility
plt.text(
box[0], box[1] - base_fontsize,
f'{max_score:.2f}',
color='red',
fontsize=base_fontsize,
fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2)
)
# Add label and rating with improved visibility
plt.text(
box[2] + base_fontsize / 2, box[1],
f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}',
color='red',
fontsize=base_fontsize,
fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2),
verticalalignment='bottom'
)
plt.axis('off')
# Save with high DPI
buf = io.BytesIO()
plt.savefig(buf,
format='png',
dpi=dpi,
bbox_inches='tight',
pad_inches=0,
metadata={'dpi': original_dpi})
buf.seek(0)
plt.close()
# Process final image
output_image = Image.open(buf)
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
final_buf = io.BytesIO()
output_image.save(final_buf, format='PNG', dpi=original_dpi)
final_buf.seek(0)
return final_buf
def process_and_analyze(image):
if image is None:
return None, "Please upload an image first."
if OPENAI_API_KEY is None:
return None, "OpenAI API key not found in environment variables."
try:
# Convert the image to PIL format if needed
if isinstance(image, tuple):
if len(image) > 0 and image[0] is not None:
image = Image.fromarray(image[0])
else:
return None, "Invalid image format provided"
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
if not isinstance(image, Image.Image):
return None, "Invalid image format"
# Ensure image is in RGB mode
if image.mode != 'RGB':
image = image.convert('RGB')
# Analyze image
gpt_response = analyze_image(image)
try:
response_data = json.loads(gpt_response)
except json.JSONDecodeError:
return None, "Error: Invalid response format from GPT"
if not all(key in response_data for key in ["label", "element", "rating"]):
return None, "Error: Missing required fields in analysis response"
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
try:
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
result_image = Image.open(result_buf)
analysis_text = (
f"Label: {response_data['label']}\n"
f"Element: {response_data['element']}\n"
f"Rating: {response_data['rating']}/5"
)
return result_image, analysis_text
except Exception as detection_error:
return None, f"Error in image detection processing: {str(detection_error)}"
else:
return image, "Not Surprising"
except Exception as e:
error_type = type(e).__name__
error_msg = str(e)
detailed_error = f"Error ({error_type}): {error_msg}"
# Log the error (you might want to add proper logging)
print(detailed_error)
return None, f"Error processing image: {error_msg}"
# Create Gradio interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Image Surprise Analysis")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image")
analyze_btn = gr.Button("Analyze Image")
with gr.Column():
output_image = gr.Image(label="Processed Image")
output_text = gr.Textbox(label="Analysis Results")
analyze_btn.click(
fn=process_and_analyze,
inputs=[input_image],
outputs=[output_image, output_text]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()