Spaces:
Running
Running
| from threading import Thread | |
| import gradio as gr | |
| from transformers import PreTrainedModel | |
| from transformers import TextIteratorStreamer, AutoModelForCausalLM, AutoTokenizer | |
| # Moondream does not support the HuggingFace pipeline system, so we have to do it manually | |
| moondream_id = "vikhyatk/moondream2" | |
| moondream_revision = "2024-04-02" | |
| moondream_tokenizer = AutoTokenizer.from_pretrained(moondream_id, revision=moondream_revision) | |
| moondream: PreTrainedModel = AutoModelForCausalLM.from_pretrained( | |
| moondream_id, trust_remote_code=True, revision=moondream_revision, torch_dtype="auto" | |
| ) | |
| moondream.eval() | |
| def answer_question(_img, _prompt): | |
| image_embeds = moondream.encode_image(_img) | |
| streamer = TextIteratorStreamer(moondream_tokenizer, skip_special_tokens=True) | |
| thread = Thread( | |
| target=moondream.answer_question, | |
| kwargs={ | |
| "image_embeds": image_embeds, | |
| "question": _prompt, | |
| "tokenizer": moondream_tokenizer, | |
| "streamer": streamer, | |
| }, | |
| ) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer.strip() | |
| if __name__ == "__main__": | |
| with gr.Blocks() as app: | |
| gr.Markdown( | |
| """ | |
| # Food Identifier | |
| Final project for IAT 481 at Simon Fraser University, Spring 2024. | |
| """ | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Input", value="Describe this image.") | |
| submit = gr.Button("Submit") | |
| with gr.Row(): | |
| img = gr.Image(label="Image", type="pil") | |
| output = gr.TextArea(label="Output") | |
| submit.click(answer_question, [img, prompt], output) | |
| app.queue().launch() | |