Spaces:
Running
Running
from threading import Thread | |
import gradio as gr | |
from transformers import PreTrainedModel | |
from transformers import TextIteratorStreamer, AutoModelForCausalLM, AutoTokenizer | |
# Moondream does not support the HuggingFace pipeline system, so we have to do it manually | |
moondream_id = "vikhyatk/moondream2" | |
moondream_revision = "2024-04-02" | |
moondream_tokenizer = AutoTokenizer.from_pretrained(moondream_id, revision=moondream_revision) | |
moondream: PreTrainedModel = AutoModelForCausalLM.from_pretrained( | |
moondream_id, trust_remote_code=True, revision=moondream_revision, torch_dtype="auto" | |
) | |
moondream.eval() | |
def answer_question(_img, _prompt): | |
image_embeds = moondream.encode_image(_img) | |
streamer = TextIteratorStreamer(moondream_tokenizer, skip_special_tokens=True) | |
thread = Thread( | |
target=moondream.answer_question, | |
kwargs={ | |
"image_embeds": image_embeds, | |
"question": _prompt, | |
"tokenizer": moondream_tokenizer, | |
"streamer": streamer, | |
}, | |
) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer.strip() | |
if __name__ == "__main__": | |
with gr.Blocks() as app: | |
gr.Markdown( | |
""" | |
# Food Identifier | |
Final project for IAT 481 at Simon Fraser University, Spring 2024. | |
""" | |
) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Input", value="Describe this image.") | |
submit = gr.Button("Submit") | |
with gr.Row(): | |
img = gr.Image(label="Image", type="pil") | |
output = gr.TextArea(label="Output") | |
submit.click(answer_question, [img, prompt], output) | |
app.queue().launch() | |