FoodIdentifier / app.py
rdezwart's picture
Change YOLOS output from image to gallery of images
0a5c36c
raw
history blame
3.47 kB
from threading import Thread
from PIL import Image
import gradio as gr
import torch
from transformers import PreTrainedModel, AutoImageProcessor # for type hint
from transformers import TextIteratorStreamer, AutoModelForCausalLM, AutoTokenizer # Moondream
from transformers import YolosImageProcessor, YolosForObjectDetection # YOLOS-small-300
# --- Moondream --- #
# Moondream does not support the HuggingFace pipeline system, so we have to do it manually
moondream_id = "vikhyatk/moondream2"
moondream_revision = "2024-04-02"
moondream_tokenizer = AutoTokenizer.from_pretrained(moondream_id, revision=moondream_revision)
moondream_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained(
moondream_id, trust_remote_code=True, revision=moondream_revision
)
moondream_model.eval()
# --- YOLOS --- #
yolos_id = "hustvl/yolos-small-300"
yolos_processor: YolosImageProcessor = YolosImageProcessor.from_pretrained(yolos_id)
yolos_model: YolosForObjectDetection = YolosForObjectDetection.from_pretrained(yolos_id)
def answer_question(img, prompt):
"""
Submits an image and prompt to the Moondream model.
:param img:
:param prompt:
:return: yields the output buffer string
"""
image_embeds = moondream_model.encode_image(img)
streamer = TextIteratorStreamer(moondream_tokenizer, skip_special_tokens=True)
thread = Thread(
target=moondream_model.answer_question,
kwargs={
"image_embeds": image_embeds,
"question": prompt,
"tokenizer": moondream_tokenizer,
"streamer": streamer,
},
)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer.strip()
def detect_objects(img: Image.Image):
inputs = yolos_processor(img, return_tensors="pt")
outputs = yolos_model(**inputs)
target_sizes = torch.tensor([tuple(reversed(img.size))])
results = yolos_processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0]
box_images = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
print(
f"Detected {yolos_model.config.id2label[label.item()]} with confidence "
f"{round(score.item(), 3)} at location {box}"
)
box_images.append(img.crop((box[0], box[1], box[2], box[3])))
return box_images
if __name__ == "__main__":
with gr.Blocks() as app:
gr.Markdown(
"""
# Food Identifier
Final project for IAT 481 at Simon Fraser University, Spring 2024.
"""
)
with gr.Tab("Object Detection"):
with gr.Row():
yolos_input = gr.Image(type="pil")
yolos_output = gr.Gallery(label="Detected Objects", show_label=True)
yolos_button = gr.Button("Submit")
with gr.Tab("Inference"):
with gr.Row():
moon_prompt = gr.Textbox(label="Input", value="Describe this image.")
moon_submit = gr.Button("Submit")
with gr.Row():
moon_img = gr.Image(label="Image", type="pil")
moon_output = gr.TextArea(label="Output")
moon_submit.click(answer_question, [moon_img, moon_prompt], moon_output)
yolos_button.click(detect_objects, [yolos_input], yolos_output)
app.queue().launch()