Spaces:
Running
on
Zero
Running
on
Zero
roychao19477
commited on
Commit
·
f28da5d
1
Parent(s):
6ca32b7
First commit
Browse files
app.py
CHANGED
@@ -28,6 +28,9 @@ Upload or record a noisy clip and click **Enhance** to hear + see its spectrogra
|
|
28 |
|
29 |
|
30 |
import torch
|
|
|
|
|
|
|
31 |
import yaml
|
32 |
import librosa
|
33 |
import librosa.display
|
@@ -51,6 +54,23 @@ from moviepy import ImageSequenceClip
|
|
51 |
# Load face detector
|
52 |
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
@spaces.GPU
|
55 |
def extract_faces(video_file):
|
56 |
cap = cv2.VideoCapture(video_file)
|
@@ -90,8 +110,22 @@ def extract_faces(video_file):
|
|
90 |
# Save as video
|
91 |
tmpdir = tempfile.mkdtemp()
|
92 |
output_path = os.path.join(tmpdir, "face_only_video.mp4")
|
93 |
-
clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=25)
|
94 |
-
clip.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
return output_path
|
97 |
|
|
|
28 |
|
29 |
|
30 |
import torch
|
31 |
+
import ffmpeg
|
32 |
+
import torchaudio
|
33 |
+
import torchaudio.transforms as T
|
34 |
import yaml
|
35 |
import librosa
|
36 |
import librosa.display
|
|
|
54 |
# Load face detector
|
55 |
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
|
56 |
|
57 |
+
def extract_resampled_audio(video_path, target_sr=16000):
|
58 |
+
# Step 1: extract audio via torchaudio
|
59 |
+
# (moviepy will still extract it to wav temp file)
|
60 |
+
tmp_audio_path = tempfile.mktemp(suffix=".wav")
|
61 |
+
subprocess.run(["ffmpeg", "-y", "-i", video_path, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", tmp_audio_path])
|
62 |
+
|
63 |
+
# Step 2: Load and resample
|
64 |
+
waveform, sr = torchaudio.load(tmp_audio_path)
|
65 |
+
if sr != target_sr:
|
66 |
+
resampler = T.Resample(orig_freq=sr, new_freq=target_sr)
|
67 |
+
waveform = resampler(waveform)
|
68 |
+
|
69 |
+
# Step 3: Save resampled audio
|
70 |
+
resampled_audio_path = tempfile.mktemp(suffix="_16k.wav")
|
71 |
+
torchaudio.save(resampled_audio_path, waveform, sample_rate=target_sr)
|
72 |
+
return resampled_audio_path
|
73 |
+
|
74 |
@spaces.GPU
|
75 |
def extract_faces(video_file):
|
76 |
cap = cv2.VideoCapture(video_file)
|
|
|
110 |
# Save as video
|
111 |
tmpdir = tempfile.mkdtemp()
|
112 |
output_path = os.path.join(tmpdir, "face_only_video.mp4")
|
113 |
+
#clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=25)
|
114 |
+
clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=fps)
|
115 |
+
clip.write_videofile(output_path, codec="libx264", audio=False, fps=25)
|
116 |
+
|
117 |
+
# Save audio from original, resampled to 16kHz
|
118 |
+
audio_path = os.path.join(tmpdir, "audio_16k.wav")
|
119 |
+
|
120 |
+
# Extract audio using ffmpeg-python (more robust than moviepy)
|
121 |
+
ffmpeg.input(video_file).output(
|
122 |
+
audio_path,
|
123 |
+
ar=16000, # resample to 16k
|
124 |
+
ac=1, # mono
|
125 |
+
format='wav',
|
126 |
+
vn=None # no video
|
127 |
+
).run(overwrite_output=True)
|
128 |
+
|
129 |
|
130 |
return output_path
|
131 |
|