Spaces:
Running
on
Zero
Running
on
Zero
roychao19477
commited on
Commit
·
98553c1
1
Parent(s):
9e925c2
Upload model
Browse files
app.py
CHANGED
@@ -67,16 +67,49 @@ from avse_code import run_avse
|
|
67 |
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
|
68 |
|
69 |
|
70 |
-
|
71 |
from decord import VideoReader, cpu
|
72 |
from model import AVSEModule
|
73 |
from config import sampling_rate
|
74 |
import spaces
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
@spaces.GPU
|
78 |
def run_avse_inference(video_path, audio_path):
|
79 |
estimated = run_avse(video_path, audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
# Save result
|
82 |
tmp_wav = audio_path.replace(".wav", "_enhanced.wav")
|
|
|
67 |
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
|
68 |
|
69 |
|
|
|
70 |
from decord import VideoReader, cpu
|
71 |
from model import AVSEModule
|
72 |
from config import sampling_rate
|
73 |
import spaces
|
74 |
|
75 |
+
# Load model once globally
|
76 |
+
#ckpt_path = "ckpts/ep215_0906.oat.ckpt"
|
77 |
+
#model = AVSEModule.load_from_checkpoint(ckpt_path)
|
78 |
+
avse_model = AVSEModule()
|
79 |
+
#avse_state_dict = torch.load("ckpts/ep215_0906.oat.ckpt")
|
80 |
+
avse_state_dict = torch.load("ckpts/ep220_0908.oat.ckpt")
|
81 |
+
avse_model.load_state_dict(avse_state_dict, strict=True)
|
82 |
+
avse_model.to("cuda")
|
83 |
+
avse_model.eval()
|
84 |
|
85 |
@spaces.GPU
|
86 |
def run_avse_inference(video_path, audio_path):
|
87 |
estimated = run_avse(video_path, audio_path)
|
88 |
+
# Load audio
|
89 |
+
#noisy, _ = sf.read(audio_path, dtype='float32') # (N, )
|
90 |
+
#noisy = torch.tensor(noisy).unsqueeze(0) # (1, N)
|
91 |
+
noisy = wavfile.read(audio_path)[1].astype(np.float32) / (2 ** 15)
|
92 |
+
|
93 |
+
# Norm.
|
94 |
+
#noisy = noisy * (0.8 / np.max(np.abs(noisy)))
|
95 |
+
|
96 |
+
# Load grayscale video
|
97 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
98 |
+
frames = vr.get_batch(list(range(len(vr)))).asnumpy()
|
99 |
+
bg_frames = np.array([
|
100 |
+
cv2.cvtColor(frames[i], cv2.COLOR_RGB2GRAY) for i in range(len(frames))
|
101 |
+
]).astype(np.float32)
|
102 |
+
bg_frames /= 255.0
|
103 |
+
|
104 |
+
|
105 |
+
# Combine into input dict (match what model.enhance expects)
|
106 |
+
data = {
|
107 |
+
"noisy_audio": noisy,
|
108 |
+
"video_frames": bg_frames[np.newaxis, ...]
|
109 |
+
}
|
110 |
+
|
111 |
+
with torch.no_grad():
|
112 |
+
estimated = avse_model.enhance(data).reshape(-1)
|
113 |
|
114 |
# Save result
|
115 |
tmp_wav = audio_path.replace(".wav", "_enhanced.wav")
|