Spaces:
Runtime error
Runtime error
| # Copyright (c) 2023, Tri Dao. | |
| # Implement residual + layer_norm / rms_norm. | |
| # Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html | |
| # For the backward pass, we keep weight_grad and bias_grad in registers and accumulate. | |
| # This is faster for dimensions up to 8k, but after that it's much slower due to register spilling. | |
| # The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine. | |
| import math | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.cuda.amp import custom_fwd, custom_bwd | |
| import triton | |
| import triton.language as tl | |
| def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False): | |
| dtype = x.dtype | |
| if upcast: | |
| weight = weight.float() | |
| bias = bias.float() if bias is not None else None | |
| if upcast: | |
| x = x.float() | |
| residual = residual.float() if residual is not None else residual | |
| if residual is not None: | |
| x = (x + residual).to(x.dtype) | |
| out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to( | |
| dtype | |
| ) | |
| return out if not prenorm else (out, x) | |
| def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False): | |
| dtype = x.dtype | |
| if upcast: | |
| weight = weight.float() | |
| bias = bias.float() if bias is not None else None | |
| if upcast: | |
| x = x.float() | |
| residual = residual.float() if residual is not None else residual | |
| if residual is not None: | |
| x = (x + residual).to(x.dtype) | |
| rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps) | |
| out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight) | |
| out = out.to(dtype) | |
| return out if not prenorm else (out, x) | |
| # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) | |
| # @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None}) | |
| def _layer_norm_fwd_1pass_kernel( | |
| X, # pointer to the input | |
| Y, # pointer to the output | |
| W, # pointer to the weights | |
| B, # pointer to the biases | |
| RESIDUAL, # pointer to the residual | |
| RESIDUAL_OUT, # pointer to the residual | |
| Mean, # pointer to the mean | |
| Rstd, # pointer to the 1/std | |
| stride_x_row, # how much to increase the pointer when moving by 1 row | |
| stride_y_row, | |
| stride_res_row, | |
| stride_res_out_row, | |
| N, # number of columns in X | |
| eps, # epsilon to avoid division by zero | |
| IS_RMS_NORM: tl.constexpr, | |
| BLOCK_N: tl.constexpr, | |
| HAS_RESIDUAL: tl.constexpr, | |
| STORE_RESIDUAL_OUT: tl.constexpr, | |
| HAS_BIAS: tl.constexpr, | |
| ): | |
| # Map the program id to the row of X and Y it should compute. | |
| row = tl.program_id(0) | |
| X += row * stride_x_row | |
| Y += row * stride_y_row | |
| if HAS_RESIDUAL: | |
| RESIDUAL += row * stride_res_row | |
| if STORE_RESIDUAL_OUT: | |
| RESIDUAL_OUT += row * stride_res_out_row | |
| # Compute mean and variance | |
| cols = tl.arange(0, BLOCK_N) | |
| x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) | |
| if HAS_RESIDUAL: | |
| residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32) | |
| x += residual | |
| if STORE_RESIDUAL_OUT: | |
| tl.store(RESIDUAL_OUT + cols, x, mask=cols < N) | |
| if not IS_RMS_NORM: | |
| mean = tl.sum(x, axis=0) / N | |
| tl.store(Mean + row, mean) | |
| xbar = tl.where(cols < N, x - mean, 0.0) | |
| var = tl.sum(xbar * xbar, axis=0) / N | |
| else: | |
| xbar = tl.where(cols < N, x, 0.0) | |
| var = tl.sum(xbar * xbar, axis=0) / N | |
| rstd = 1 / tl.sqrt(var + eps) | |
| tl.store(Rstd + row, rstd) | |
| # Normalize and apply linear transformation | |
| mask = cols < N | |
| w = tl.load(W + cols, mask=mask).to(tl.float32) | |
| if HAS_BIAS: | |
| b = tl.load(B + cols, mask=mask).to(tl.float32) | |
| x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd | |
| y = x_hat * w + b if HAS_BIAS else x_hat * w | |
| # Write output | |
| tl.store(Y + cols, y, mask=mask) | |
| def _layer_norm_fwd( | |
| x, weight, bias, eps, residual=None, out_dtype=None, residual_dtype=None, is_rms_norm=False | |
| ): | |
| if residual is not None: | |
| residual_dtype = residual.dtype | |
| M, N = x.shape | |
| assert x.stride(-1) == 1 | |
| if residual is not None: | |
| assert residual.stride(-1) == 1 | |
| assert residual.shape == (M, N) | |
| assert weight.shape == (N,) | |
| assert weight.stride(-1) == 1 | |
| if bias is not None: | |
| assert bias.stride(-1) == 1 | |
| assert bias.shape == (N,) | |
| # allocate output | |
| y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype) | |
| assert y.stride(-1) == 1 | |
| if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype): | |
| residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype) | |
| assert residual_out.stride(-1) == 1 | |
| else: | |
| residual_out = None | |
| mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None | |
| rstd = torch.empty((M,), dtype=torch.float32, device=x.device) | |
| # Less than 64KB per feature: enqueue fused kernel | |
| MAX_FUSED_SIZE = 65536 // x.element_size() | |
| BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) | |
| if N > BLOCK_N: | |
| raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") | |
| # heuristics for number of warps | |
| with torch.cuda.device(x.device.index): | |
| _layer_norm_fwd_1pass_kernel[(M,)]( | |
| x, | |
| y, | |
| weight, | |
| bias, | |
| residual, | |
| residual_out, | |
| mean, | |
| rstd, | |
| x.stride(0), | |
| y.stride(0), | |
| residual.stride(0) if residual is not None else 0, | |
| residual_out.stride(0) if residual_out is not None else 0, | |
| N, | |
| eps, | |
| is_rms_norm, | |
| BLOCK_N, | |
| residual is not None, | |
| residual_out is not None, | |
| bias is not None, | |
| ) | |
| # residual_out is None if residual is None and residual_dtype == input_dtype | |
| return y, mean, rstd, residual_out if residual_out is not None else x | |
| # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) | |
| # @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None}) | |
| # @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None}) | |
| def _layer_norm_bwd_kernel( | |
| X, # pointer to the input | |
| W, # pointer to the weights | |
| B, # pointer to the biases | |
| Y, # pointer to the output to be recomputed | |
| DY, # pointer to the output gradient | |
| DX, # pointer to the input gradient | |
| DW, # pointer to the partial sum of weights gradient | |
| DB, # pointer to the partial sum of biases gradient | |
| DRESIDUAL, | |
| DRESIDUAL_IN, | |
| Mean, # pointer to the mean | |
| Rstd, # pointer to the 1/std | |
| stride_x_row, # how much to increase the pointer when moving by 1 row | |
| stride_y_row, | |
| stride_dy_row, | |
| stride_dx_row, | |
| stride_dres_row, | |
| stride_dres_in_row, | |
| M, # number of rows in X | |
| N, # number of columns in X | |
| eps, # epsilon to avoid division by zero | |
| rows_per_program, | |
| IS_RMS_NORM: tl.constexpr, | |
| BLOCK_N: tl.constexpr, | |
| HAS_DRESIDUAL: tl.constexpr, | |
| STORE_DRESIDUAL: tl.constexpr, | |
| HAS_BIAS: tl.constexpr, | |
| RECOMPUTE_OUTPUT: tl.constexpr, | |
| ): | |
| # Map the program id to the elements of X, DX, and DY it should compute. | |
| row_block_id = tl.program_id(0) | |
| row_start = row_block_id * rows_per_program | |
| cols = tl.arange(0, BLOCK_N) | |
| mask = cols < N | |
| X += row_start * stride_x_row | |
| if HAS_DRESIDUAL: | |
| DRESIDUAL += row_start * stride_dres_row | |
| if STORE_DRESIDUAL: | |
| DRESIDUAL_IN += row_start * stride_dres_in_row | |
| DY += row_start * stride_dy_row | |
| DX += row_start * stride_dx_row | |
| if RECOMPUTE_OUTPUT: | |
| Y += row_start * stride_y_row | |
| w = tl.load(W + cols, mask=mask).to(tl.float32) | |
| if RECOMPUTE_OUTPUT and HAS_BIAS: | |
| b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32) | |
| dw = tl.zeros((BLOCK_N,), dtype=tl.float32) | |
| if HAS_BIAS: | |
| db = tl.zeros((BLOCK_N,), dtype=tl.float32) | |
| row_end = min((row_block_id + 1) * rows_per_program, M) | |
| for row in range(row_start, row_end): | |
| # Load data to SRAM | |
| x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) | |
| dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) | |
| if not IS_RMS_NORM: | |
| mean = tl.load(Mean + row) | |
| rstd = tl.load(Rstd + row) | |
| # Compute dx | |
| xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd | |
| xhat = tl.where(mask, xhat, 0.0) | |
| if RECOMPUTE_OUTPUT: | |
| y = xhat * w + b if HAS_BIAS else xhat * w | |
| tl.store(Y + cols, y, mask=mask) | |
| wdy = w * dy | |
| dw += dy * xhat | |
| if HAS_BIAS: | |
| db += dy | |
| if not IS_RMS_NORM: | |
| c1 = tl.sum(xhat * wdy, axis=0) / N | |
| c2 = tl.sum(wdy, axis=0) / N | |
| dx = (wdy - (xhat * c1 + c2)) * rstd | |
| else: | |
| c1 = tl.sum(xhat * wdy, axis=0) / N | |
| dx = (wdy - xhat * c1) * rstd | |
| if HAS_DRESIDUAL: | |
| dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32) | |
| dx += dres | |
| # Write dx | |
| if STORE_DRESIDUAL: | |
| tl.store(DRESIDUAL_IN + cols, dx, mask=mask) | |
| tl.store(DX + cols, dx, mask=mask) | |
| X += stride_x_row | |
| if HAS_DRESIDUAL: | |
| DRESIDUAL += stride_dres_row | |
| if STORE_DRESIDUAL: | |
| DRESIDUAL_IN += stride_dres_in_row | |
| if RECOMPUTE_OUTPUT: | |
| Y += stride_y_row | |
| DY += stride_dy_row | |
| DX += stride_dx_row | |
| tl.store(DW + row_block_id * N + cols, dw, mask=mask) | |
| if HAS_BIAS: | |
| tl.store(DB + row_block_id * N + cols, db, mask=mask) | |
| def _layer_norm_bwd( | |
| dy, | |
| x, | |
| weight, | |
| bias, | |
| eps, | |
| mean, | |
| rstd, | |
| dresidual=None, | |
| has_residual=False, | |
| is_rms_norm=False, | |
| x_dtype=None, | |
| recompute_output=False, | |
| ): | |
| M, N = x.shape | |
| assert x.stride(-1) == 1 | |
| assert dy.stride(-1) == 1 | |
| assert dy.shape == (M, N) | |
| if dresidual is not None: | |
| assert dresidual.stride(-1) == 1 | |
| assert dresidual.shape == (M, N) | |
| assert weight.shape == (N,) | |
| assert weight.stride(-1) == 1 | |
| if bias is not None: | |
| assert bias.stride(-1) == 1 | |
| assert bias.shape == (N,) | |
| # allocate output | |
| dx = ( | |
| torch.empty_like(x) | |
| if x_dtype is None | |
| else torch.empty(M, N, dtype=x_dtype, device=x.device) | |
| ) | |
| dresidual_in = torch.empty_like(x) if has_residual and dx.dtype != x.dtype else None | |
| y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None | |
| # Less than 64KB per feature: enqueue fused kernel | |
| MAX_FUSED_SIZE = 65536 // x.element_size() | |
| BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) | |
| if N > BLOCK_N: | |
| raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") | |
| sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count | |
| _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device) | |
| _db = ( | |
| torch.empty((sm_count, N), dtype=torch.float32, device=bias.device) | |
| if bias is not None | |
| else None | |
| ) | |
| rows_per_program = math.ceil(M / sm_count) | |
| grid = (sm_count,) | |
| with torch.cuda.device(x.device.index): | |
| _layer_norm_bwd_kernel[grid]( | |
| x, | |
| weight, | |
| bias, | |
| y, | |
| dy, | |
| dx, | |
| _dw, | |
| _db, | |
| dresidual, | |
| dresidual_in, | |
| mean, | |
| rstd, | |
| x.stride(0), | |
| 0 if not recompute_output else y.stride(0), | |
| dy.stride(0), | |
| dx.stride(0), | |
| dresidual.stride(0) if dresidual is not None else 0, | |
| dresidual_in.stride(0) if dresidual_in is not None else 0, | |
| M, | |
| N, | |
| eps, | |
| rows_per_program, | |
| is_rms_norm, | |
| BLOCK_N, | |
| dresidual is not None, | |
| dresidual_in is not None, | |
| bias is not None, | |
| ) | |
| dw = _dw.sum(0).to(weight.dtype) | |
| db = _db.sum(0).to(bias.dtype) if bias is not None else None | |
| # Don't need to compute dresidual_in separately in this case | |
| if has_residual and dx.dtype == x.dtype: | |
| dresidual_in = dx | |
| return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y) | |
| class LayerNormFn(torch.autograd.Function): | |
| def forward( | |
| ctx, | |
| x, | |
| weight, | |
| bias, | |
| residual=None, | |
| eps=1e-6, | |
| prenorm=False, | |
| residual_in_fp32=False, | |
| is_rms_norm=False, | |
| ): | |
| x_shape_og = x.shape | |
| # reshape input data into 2D tensor | |
| x = x.reshape(-1, x.shape[-1]) | |
| if x.stride(-1) != 1: | |
| x = x.contiguous() | |
| if residual is not None: | |
| assert residual.shape == x_shape_og | |
| residual = residual.reshape(-1, residual.shape[-1]) | |
| if residual.stride(-1) != 1: | |
| residual = residual.contiguous() | |
| weight = weight.contiguous() | |
| if bias is not None: | |
| bias = bias.contiguous() | |
| residual_dtype = ( | |
| residual.dtype | |
| if residual is not None | |
| else (torch.float32 if residual_in_fp32 else None) | |
| ) | |
| y, mean, rstd, residual_out = _layer_norm_fwd( | |
| x, weight, bias, eps, residual, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm | |
| ) | |
| ctx.save_for_backward(residual_out, weight, bias, mean, rstd) | |
| ctx.x_shape_og = x_shape_og | |
| ctx.eps = eps | |
| ctx.is_rms_norm = is_rms_norm | |
| ctx.has_residual = residual is not None | |
| ctx.prenorm = prenorm | |
| ctx.x_dtype = x.dtype | |
| y = y.reshape(x_shape_og) | |
| return y if not prenorm else (y, residual_out.reshape(x_shape_og)) | |
| def backward(ctx, dy, *args): | |
| x, weight, bias, mean, rstd = ctx.saved_tensors | |
| dy = dy.reshape(-1, dy.shape[-1]) | |
| if dy.stride(-1) != 1: | |
| dy = dy.contiguous() | |
| assert dy.shape == x.shape | |
| if ctx.prenorm: | |
| dresidual = args[0] | |
| dresidual = dresidual.reshape(-1, dresidual.shape[-1]) | |
| if dresidual.stride(-1) != 1: | |
| dresidual = dresidual.contiguous() | |
| assert dresidual.shape == x.shape | |
| else: | |
| dresidual = None | |
| dx, dw, db, dresidual_in = _layer_norm_bwd( | |
| dy, | |
| x, | |
| weight, | |
| bias, | |
| ctx.eps, | |
| mean, | |
| rstd, | |
| dresidual, | |
| ctx.has_residual, | |
| ctx.is_rms_norm, | |
| x_dtype=ctx.x_dtype, | |
| ) | |
| return ( | |
| dx.reshape(ctx.x_shape_og), | |
| dw, | |
| db, | |
| dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, | |
| None, | |
| None, | |
| None, | |
| None, | |
| ) | |
| def layer_norm_fn( | |
| x, | |
| weight, | |
| bias, | |
| residual=None, | |
| eps=1e-6, | |
| prenorm=False, | |
| residual_in_fp32=False, | |
| is_rms_norm=False, | |
| ): | |
| return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, is_rms_norm) | |
| def rms_norm_fn(x, weight, bias, residual=None, prenorm=False, residual_in_fp32=False, eps=1e-6): | |
| return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, True) | |
| class RMSNorm(torch.nn.Module): | |
| def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None): | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) | |
| self.register_parameter("bias", None) | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| torch.nn.init.ones_(self.weight) | |
| def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False): | |
| return rms_norm_fn( | |
| x, | |
| self.weight, | |
| self.bias, | |
| residual=residual, | |
| eps=self.eps, | |
| prenorm=prenorm, | |
| residual_in_fp32=residual_in_fp32, | |
| ) | |
| class LayerNormLinearFn(torch.autograd.Function): | |
| def forward( | |
| ctx, | |
| x, | |
| norm_weight, | |
| norm_bias, | |
| linear_weight, | |
| linear_bias, | |
| residual=None, | |
| eps=1e-6, | |
| prenorm=False, | |
| residual_in_fp32=False, | |
| is_rms_norm=False, | |
| ): | |
| x_shape_og = x.shape | |
| # reshape input data into 2D tensor | |
| x = x.reshape(-1, x.shape[-1]) | |
| if x.stride(-1) != 1: | |
| x = x.contiguous() | |
| if residual is not None: | |
| assert residual.shape == x_shape_og | |
| residual = residual.reshape(-1, residual.shape[-1]) | |
| if residual.stride(-1) != 1: | |
| residual = residual.contiguous() | |
| norm_weight = norm_weight.contiguous() | |
| if norm_bias is not None: | |
| norm_bias = norm_bias.contiguous() | |
| residual_dtype = ( | |
| residual.dtype | |
| if residual is not None | |
| else (torch.float32 if residual_in_fp32 else None) | |
| ) | |
| y, mean, rstd, residual_out = _layer_norm_fwd( | |
| x, | |
| norm_weight, | |
| norm_bias, | |
| eps, | |
| residual, | |
| out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype(), | |
| residual_dtype=residual_dtype, | |
| is_rms_norm=is_rms_norm, | |
| ) | |
| y = y.reshape(x_shape_og) | |
| dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype | |
| linear_weight = linear_weight.to(dtype) | |
| linear_bias = linear_bias.to(dtype) if linear_bias is not None else None | |
| out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias) | |
| # We don't store y, will be recomputed in the backward pass to save memory | |
| ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd) | |
| ctx.x_shape_og = x_shape_og | |
| ctx.eps = eps | |
| ctx.is_rms_norm = is_rms_norm | |
| ctx.has_residual = residual is not None | |
| ctx.prenorm = prenorm | |
| ctx.x_dtype = x.dtype | |
| ctx.linear_bias_is_none = linear_bias is None | |
| return out if not prenorm else (out, residual_out.reshape(x_shape_og)) | |
| def backward(ctx, dout, *args): | |
| x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors | |
| dout = dout.reshape(-1, dout.shape[-1]) | |
| dy = F.linear(dout, linear_weight.t()) | |
| dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0) | |
| if dy.stride(-1) != 1: | |
| dy = dy.contiguous() | |
| assert dy.shape == x.shape | |
| if ctx.prenorm: | |
| dresidual = args[0] | |
| dresidual = dresidual.reshape(-1, dresidual.shape[-1]) | |
| if dresidual.stride(-1) != 1: | |
| dresidual = dresidual.contiguous() | |
| assert dresidual.shape == x.shape | |
| else: | |
| dresidual = None | |
| dx, dnorm_weight, dnorm_bias, dresidual_in, y = _layer_norm_bwd( | |
| dy, | |
| x, | |
| norm_weight, | |
| norm_bias, | |
| ctx.eps, | |
| mean, | |
| rstd, | |
| dresidual, | |
| ctx.has_residual, | |
| ctx.is_rms_norm, | |
| x_dtype=ctx.x_dtype, | |
| recompute_output=True, | |
| ) | |
| dlinear_weight = torch.einsum("bo,bi->oi", dout, y) | |
| return ( | |
| dx.reshape(ctx.x_shape_og), | |
| dnorm_weight, | |
| dnorm_bias, | |
| dlinear_weight, | |
| dlinear_bias, | |
| dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, | |
| None, | |
| None, | |
| None, | |
| None, | |
| ) | |
| def layer_norm_linear_fn( | |
| x, | |
| norm_weight, | |
| norm_bias, | |
| linear_weight, | |
| linear_bias, | |
| residual=None, | |
| eps=1e-6, | |
| prenorm=False, | |
| residual_in_fp32=False, | |
| is_rms_norm=False, | |
| ): | |
| return LayerNormLinearFn.apply( | |
| x, | |
| norm_weight, | |
| norm_bias, | |
| linear_weight, | |
| linear_bias, | |
| residual, | |
| eps, | |
| prenorm, | |
| residual_in_fp32, | |
| is_rms_norm, | |
| ) | |