Spaces:
Runtime error
Runtime error
| # Copyright (c) 2023, Tri Dao, Albert Gu. | |
| import math | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch import Tensor | |
| from einops import rearrange, repeat | |
| from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn | |
| try: | |
| from causal_conv1d import causal_conv1d_fn, causal_conv1d_update | |
| except ImportError: | |
| causal_conv1d_fn, causal_conv1d_update = None, None | |
| try: | |
| from mamba_ssm.ops.triton.selective_state_update import selective_state_update | |
| except ImportError: | |
| selective_state_update = None | |
| try: | |
| from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn | |
| except ImportError: | |
| RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None | |
| class Mamba(nn.Module): | |
| def __init__( | |
| self, | |
| d_model, | |
| d_state=16, | |
| d_conv=4, | |
| expand=2, | |
| dt_rank="auto", | |
| dt_min=0.001, | |
| dt_max=0.1, | |
| dt_init="random", | |
| dt_scale=1.0, | |
| dt_init_floor=1e-4, | |
| conv_bias=True, | |
| bias=False, | |
| use_fast_path=True, # Fused kernel options | |
| layer_idx=None, | |
| device=None, | |
| dtype=None, | |
| ): | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super().__init__() | |
| self.d_model = d_model | |
| self.d_state = d_state | |
| self.d_conv = d_conv | |
| self.expand = expand | |
| self.d_inner = int(self.expand * self.d_model) | |
| self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank | |
| self.use_fast_path = use_fast_path | |
| self.layer_idx = layer_idx | |
| self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs) | |
| self.conv1d = nn.Conv1d( | |
| in_channels=self.d_inner, | |
| out_channels=self.d_inner, | |
| bias=conv_bias, | |
| kernel_size=d_conv, | |
| groups=self.d_inner, | |
| padding=d_conv - 1, | |
| **factory_kwargs, | |
| ) | |
| self.activation = "silu" | |
| self.act = nn.SiLU() | |
| self.x_proj = nn.Linear( | |
| self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs | |
| ) | |
| self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs) | |
| # Initialize special dt projection to preserve variance at initialization | |
| dt_init_std = self.dt_rank**-0.5 * dt_scale | |
| if dt_init == "constant": | |
| nn.init.constant_(self.dt_proj.weight, dt_init_std) | |
| elif dt_init == "random": | |
| nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std) | |
| else: | |
| raise NotImplementedError | |
| # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max | |
| dt = torch.exp( | |
| torch.rand(self.d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min)) | |
| + math.log(dt_min) | |
| ).clamp(min=dt_init_floor) | |
| # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 | |
| inv_dt = dt + torch.log(-torch.expm1(-dt)) | |
| with torch.no_grad(): | |
| self.dt_proj.bias.copy_(inv_dt) | |
| # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit | |
| self.dt_proj.bias._no_reinit = True | |
| # S4D real initialization | |
| A = repeat( | |
| torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device), | |
| "n -> d n", | |
| d=self.d_inner, | |
| ).contiguous() | |
| A_log = torch.log(A) # Keep A_log in fp32 | |
| self.A_log = nn.Parameter(A_log) | |
| self.A_log._no_weight_decay = True | |
| # D "skip" parameter | |
| self.D = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32 | |
| self.D._no_weight_decay = True | |
| self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs) | |
| def forward(self, hidden_states, inference_params=None): | |
| """ | |
| hidden_states: (B, L, D) | |
| Returns: same shape as hidden_states | |
| """ | |
| batch, seqlen, dim = hidden_states.shape | |
| conv_state, ssm_state = None, None | |
| if inference_params is not None: | |
| conv_state, ssm_state = self._get_states_from_cache(inference_params, batch) | |
| if inference_params.seqlen_offset > 0: | |
| # The states are updated inplace | |
| out, _, _ = self.step(hidden_states, conv_state, ssm_state) | |
| return out | |
| # We do matmul and transpose BLH -> HBL at the same time | |
| xz = rearrange( | |
| self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"), | |
| "d (b l) -> b d l", | |
| l=seqlen, | |
| ) | |
| if self.in_proj.bias is not None: | |
| xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1") | |
| A = -torch.exp(self.A_log.float()) # (d_inner, d_state) | |
| # In the backward pass we write dx and dz next to each other to avoid torch.cat | |
| if self.use_fast_path and causal_conv1d_fn is not None and inference_params is None: # Doesn't support outputting the states | |
| out = mamba_inner_fn( | |
| xz, | |
| self.conv1d.weight, | |
| self.conv1d.bias, | |
| self.x_proj.weight, | |
| self.dt_proj.weight, | |
| self.out_proj.weight, | |
| self.out_proj.bias, | |
| A, | |
| None, # input-dependent B | |
| None, # input-dependent C | |
| self.D.float(), | |
| delta_bias=self.dt_proj.bias.float(), | |
| delta_softplus=True, | |
| ) | |
| else: | |
| x, z = xz.chunk(2, dim=1) | |
| # Compute short convolution | |
| if conv_state is not None: | |
| # If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv | |
| # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise. | |
| conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W) | |
| if causal_conv1d_fn is None: | |
| x = self.act(self.conv1d(x)[..., :seqlen]) | |
| else: | |
| assert self.activation in ["silu", "swish"] | |
| x = causal_conv1d_fn( | |
| x=x, | |
| weight=rearrange(self.conv1d.weight, "d 1 w -> d w"), | |
| bias=self.conv1d.bias, | |
| activation=self.activation, | |
| ) | |
| # We're careful here about the layout, to avoid extra transposes. | |
| # We want dt to have d as the slowest moving dimension | |
| # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects. | |
| x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d) | |
| dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1) | |
| dt = self.dt_proj.weight @ dt.t() | |
| dt = rearrange(dt, "d (b l) -> b d l", l=seqlen) | |
| B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous() | |
| C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous() | |
| assert self.activation in ["silu", "swish"] | |
| y = selective_scan_fn( | |
| x, | |
| dt, | |
| A, | |
| B, | |
| C, | |
| self.D.float(), | |
| z=z, | |
| delta_bias=self.dt_proj.bias.float(), | |
| delta_softplus=True, | |
| return_last_state=ssm_state is not None, | |
| ) | |
| if ssm_state is not None: | |
| y, last_state = y | |
| ssm_state.copy_(last_state) | |
| y = rearrange(y, "b d l -> b l d") | |
| out = self.out_proj(y) | |
| return out | |
| def step(self, hidden_states, conv_state, ssm_state): | |
| dtype = hidden_states.dtype | |
| assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now" | |
| xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D) | |
| x, z = xz.chunk(2, dim=-1) # (B D) | |
| # Conv step | |
| if causal_conv1d_update is None: | |
| conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W) | |
| conv_state[:, :, -1] = x | |
| x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D) | |
| if self.conv1d.bias is not None: | |
| x = x + self.conv1d.bias | |
| x = self.act(x).to(dtype=dtype) | |
| else: | |
| x = causal_conv1d_update( | |
| x, | |
| conv_state, | |
| rearrange(self.conv1d.weight, "d 1 w -> d w"), | |
| self.conv1d.bias, | |
| self.activation, | |
| ) | |
| x_db = self.x_proj(x) # (B dt_rank+2*d_state) | |
| dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1) | |
| # Don't add dt_bias here | |
| dt = F.linear(dt, self.dt_proj.weight) # (B d_inner) | |
| A = -torch.exp(self.A_log.float()) # (d_inner, d_state) | |
| # SSM step | |
| if selective_state_update is None: | |
| # Discretize A and B | |
| dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype)) | |
| dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A)) | |
| dB = torch.einsum("bd,bn->bdn", dt, B) | |
| ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB) | |
| y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C) | |
| y = y + self.D.to(dtype) * x | |
| y = y * self.act(z) # (B D) | |
| else: | |
| y = selective_state_update( | |
| ssm_state, x, dt, A, B, C, self.D, z=z, dt_bias=self.dt_proj.bias, dt_softplus=True | |
| ) | |
| out = self.out_proj(y) | |
| return out.unsqueeze(1), conv_state, ssm_state | |
| def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): | |
| device = self.out_proj.weight.device | |
| conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype | |
| conv_state = torch.zeros( | |
| batch_size, self.d_model * self.expand, self.d_conv, device=device, dtype=conv_dtype | |
| ) | |
| ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype | |
| # ssm_dtype = torch.float32 | |
| ssm_state = torch.zeros( | |
| batch_size, self.d_model * self.expand, self.d_state, device=device, dtype=ssm_dtype | |
| ) | |
| return conv_state, ssm_state | |
| def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False): | |
| assert self.layer_idx is not None | |
| if self.layer_idx not in inference_params.key_value_memory_dict: | |
| batch_shape = (batch_size,) | |
| conv_state = torch.zeros( | |
| batch_size, | |
| self.d_model * self.expand, | |
| self.d_conv, | |
| device=self.conv1d.weight.device, | |
| dtype=self.conv1d.weight.dtype, | |
| ) | |
| ssm_state = torch.zeros( | |
| batch_size, | |
| self.d_model * self.expand, | |
| self.d_state, | |
| device=self.dt_proj.weight.device, | |
| dtype=self.dt_proj.weight.dtype, | |
| # dtype=torch.float32, | |
| ) | |
| inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state) | |
| else: | |
| conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx] | |
| # TODO: What if batch size changes between generation, and we reuse the same states? | |
| if initialize_states: | |
| conv_state.zero_() | |
| ssm_state.zero_() | |
| return conv_state, ssm_state | |
| class Block(nn.Module): | |
| def __init__( | |
| self, dim, mixer_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False | |
| ): | |
| """ | |
| Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection" | |
| This Block has a slightly different structure compared to a regular | |
| prenorm Transformer block. | |
| The standard block is: LN -> MHA/MLP -> Add. | |
| [Ref: https://arxiv.org/abs/2002.04745] | |
| Here we have: Add -> LN -> Mixer, returning both | |
| the hidden_states (output of the mixer) and the residual. | |
| This is purely for performance reasons, as we can fuse add and LayerNorm. | |
| The residual needs to be provided (except for the very first block). | |
| """ | |
| super().__init__() | |
| self.residual_in_fp32 = residual_in_fp32 | |
| self.fused_add_norm = fused_add_norm | |
| self.mixer = mixer_cls(dim) | |
| self.norm = norm_cls(dim) | |
| if self.fused_add_norm: | |
| assert RMSNorm is not None, "RMSNorm import fails" | |
| assert isinstance( | |
| self.norm, (nn.LayerNorm, RMSNorm) | |
| ), "Only LayerNorm and RMSNorm are supported for fused_add_norm" | |
| def forward( | |
| self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None | |
| ): | |
| r"""Pass the input through the encoder layer. | |
| Args: | |
| hidden_states: the sequence to the encoder layer (required). | |
| residual: hidden_states = Mixer(LN(residual)) | |
| """ | |
| if not self.fused_add_norm: | |
| residual = (hidden_states + residual) if residual is not None else hidden_states | |
| hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype)) | |
| if self.residual_in_fp32: | |
| residual = residual.to(torch.float32) | |
| else: | |
| fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn | |
| hidden_states, residual = fused_add_norm_fn( | |
| hidden_states, | |
| self.norm.weight, | |
| self.norm.bias, | |
| residual=residual, | |
| prenorm=True, | |
| residual_in_fp32=self.residual_in_fp32, | |
| eps=self.norm.eps, | |
| ) | |
| hidden_states = self.mixer(hidden_states, inference_params=inference_params) | |
| return hidden_states, residual | |
| def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): | |
| return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) | |