roychao19477
Update module
138c0ad
raw
history blame
11 kB
import shlex
import subprocess
import spaces
import torch
import os
import shutil
import glob
import gradio as gr
# install packages for mamba
def install_mamba():
#subprocess.run(shlex.split("pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118"))
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
#subprocess.run(shlex.split("pip install numpy==1.26.4"))
def clone_github():
subprocess.run([
"git", "clone",
f"https://RoyChao19477:{os.environ['GITHUB_TOKEN']}@github.com/RoyChao19477/for_HF_AVSEMamba.git"
])
# move all files except README.md
for item in glob.glob("tmp_repo/*"):
if os.path.basename(item) != "README.md":
if os.path.isdir(item):
shutil.move(item, ".")
else:
shutil.move(item, os.path.join(".", os.path.basename(item)))
shutil.rmtree("tmp_repo")
install_mamba()
clone_github()
ABOUT = """
# SEMamba: Speech Enhancement
A Mamba-based model that denoises real-world audio.
Upload or record a noisy clip and click **Enhance** to hear + see its spectrogram.
"""
import torch
import ffmpeg
import torchaudio
import torchaudio.transforms as T
import yaml
import librosa
import librosa.display
import matplotlib
import numpy as np
import soundfile as sf
import matplotlib.pyplot as plt
from models.stfts import mag_phase_stft, mag_phase_istft
from models.generator import SEMamba
from models.pcs400 import cal_pcs
from ultralytics import YOLO
import supervision as sv
import gradio as gr
import cv2
import os
import tempfile
from ultralytics import YOLO
from moviepy import ImageSequenceClip
# Load face detector
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
from decord import VideoReader, cpu
from model import AVSEModule
from config import sampling_rate
import spaces
# Load model once globally
ckpt_path = "ckpts/ep215_0906.oat.ckpt"
model = AVSEModule.load_from_checkpoint(ckpt_path)
model.to("cuda")
model.eval()
@spaces.GPU
def run_avse_inference(video_path, audio_path):
# Load audio
noisy, _ = sf.read(audio_path, dtype='float32') # (N, )
noisy = torch.tensor(noisy).unsqueeze(0) # (1, N)
# Load grayscale video
vr = VideoReader(video_path, ctx=cpu(0))
frames = vr.get_batch(list(range(len(vr)))).asnumpy()
bg_frames = np.array([cv2.cvtColor(f, cv2.COLOR_RGB2GRAY) for f in frames]).astype(np.float32) / 255.0
bg_frames = torch.tensor(bg_frames).unsqueeze(0).unsqueeze(0) # (1, 1, T, H, W)
# Combine into input dict (match what model.enhance expects)
data = {
"noisy_audio": noisy,
"video_frames": bg_frames
}
with torch.no_grad():
estimated = model.enhance(data).reshape(-1).cpu().numpy()
# Save result
tmp_wav = audio_path.replace(".wav", "_enhanced.wav")
sf.write(tmp_wav, estimated, samplerate=sampling_rate)
return tmp_wav
def extract_resampled_audio(video_path, target_sr=16000):
# Step 1: extract audio via torchaudio
# (moviepy will still extract it to wav temp file)
tmp_audio_path = tempfile.mktemp(suffix=".wav")
subprocess.run(["ffmpeg", "-y", "-i", video_path, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", tmp_audio_path])
# Step 2: Load and resample
waveform, sr = torchaudio.load(tmp_audio_path)
if sr != target_sr:
resampler = T.Resample(orig_freq=sr, new_freq=target_sr)
waveform = resampler(waveform)
# Step 3: Save resampled audio
resampled_audio_path = tempfile.mktemp(suffix="_16k.wav")
torchaudio.save(resampled_audio_path, waveform, sample_rate=target_sr)
return resampled_audio_path
@spaces.GPU
def extract_faces(video_file):
cap = cv2.VideoCapture(video_file)
fps = cap.get(cv2.CAP_PROP_FPS)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
# Inference
results = model(frame, verbose=False)[0]
for box in results.boxes:
# version 1
# x1, y1, x2, y2 = map(int, box.xyxy[0])
# version 2
h, w, _ = frame.shape
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
pad_ratio = 0.3 # 30% padding
dx = (x2 - x1) * pad_ratio
dy = (y2 - y1) * pad_ratio
x1 = int(max(0, x1 - dx))
y1 = int(max(0, y1 - dy))
x2 = int(min(w, x2 + dx))
y2 = int(min(h, y2 + dy))
face_crop = frame[y1:y2, x1:x2]
if face_crop.size != 0:
resized = cv2.resize(face_crop, (224, 224))
frames.append(resized)
break # only one face per frame
cap.release()
# Save as video
tmpdir = tempfile.mkdtemp()
output_path = os.path.join(tmpdir, "face_only_video.mp4")
#clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=25)
clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=fps)
clip.write_videofile(output_path, codec="libx264", audio=False, fps=25)
# Save audio from original, resampled to 16kHz
audio_path = os.path.join(tmpdir, "audio_16k.wav")
# Extract audio using ffmpeg-python (more robust than moviepy)
ffmpeg.input(video_file).output(
audio_path,
ar=16000, # resample to 16k
ac=1, # mono
format='wav',
vn=None # no video
).run(overwrite_output=True)
# ------------------------------- #
# AVSE models
noisy = self.load_wav(audio_path)
vr = VideoReader(output_path, ctx=cpu(0))
frames = vr.get_batch(list(range(len(vr)))).asnumpy()
bg_frames = np.array([
cv2.cvtColor(frames[i], cv2.COLOR_RGB2GRAY) for i in range(len(frames))
]).astype(np.float32)
bg_frames /= 255.0
enhanced_audio_path = run_avse_inference(output_path, audio_path)
return output_path, enhanced_audio_path
#return output_path, audio_path
iface = gr.Interface(
fn=extract_faces,
inputs=gr.Video(label="Upload or record your video"),
outputs=[
gr.Video(label="Detected Face Only Video"),
#gr.Audio(label="Extracted Audio (16kHz)", type="filepath"),
gr.Audio(label="Enhanced Audio", type="filepath")
],
title="Face Detector",
description="Upload or record a video. We'll crop face regions and return a face-only video and its 16kHz audio."
)
iface.launch()
ckpt = "ckpts/SEMamba_advanced.pth"
cfg_f = "recipes/SEMamba_advanced.yaml"
# load config
with open(cfg_f, 'r') as f:
cfg = yaml.safe_load(f)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda"
model = SEMamba(cfg).to(device)
#sdict = torch.load(ckpt, map_location=device)
#model.load_state_dict(sdict["generator"])
#model.eval()
@spaces.GPU
def enhance(filepath, model_name):
# Load model based on selection
ckpt_path = {
"VCTK-Demand": "ckpts/SEMamba_advanced.pth",
"VCTK+DNS": "ckpts/vd.pth"
}[model_name]
print("Loading:", ckpt_path)
model.load_state_dict(torch.load(ckpt_path, map_location=device)["generator"])
model.eval()
with torch.no_grad():
# load & resample
wav, orig_sr = librosa.load(filepath, sr=None)
noisy_wav = wav.copy()
if orig_sr != 16000:
wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=16000)
x = torch.from_numpy(wav).float().to(device)
norm = torch.sqrt(len(x)/torch.sum(x**2))
#x = (x * norm).unsqueeze(0)
x = (x * norm)
# split into 4s segments (64000 samples)
segment_len = 4 * 16000
chunks = x.split(segment_len)
enhanced_chunks = []
for chunk in chunks:
if len(chunk) < segment_len:
#pad = torch.zeros(segment_len - len(chunk), device=chunk.device)
pad = (torch.randn(segment_len - len(chunk), device=chunk.device) * 1e-4)
chunk = torch.cat([chunk, pad])
chunk = chunk.unsqueeze(0)
amp, pha, _ = mag_phase_stft(chunk, 400, 100, 400, 0.3)
amp2, pha2, _ = model(amp, pha)
out = mag_phase_istft(amp2, pha2, 400, 100, 400, 0.3)
out = (out / norm).squeeze(0)
enhanced_chunks.append(out)
out = torch.cat(enhanced_chunks)[:len(x)].cpu().numpy() # trim padding
# back to original rate
if orig_sr != 16000:
out = librosa.resample(out, orig_sr=16000, target_sr=orig_sr)
# Normalize
peak = np.max(np.abs(out))
if peak > 0.05:
out = out / peak * 0.85
# write file
sf.write("enhanced.wav", out, orig_sr)
# spectrograms
fig, axs = plt.subplots(1, 2, figsize=(16, 4))
# noisy
D_noisy = librosa.stft(noisy_wav, n_fft=512, hop_length=256)
S_noisy = librosa.amplitude_to_db(np.abs(D_noisy), ref=np.max)
librosa.display.specshow(S_noisy, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[0], vmax=0)
axs[0].set_title("Noisy Spectrogram")
# enhanced
D_clean = librosa.stft(out, n_fft=512, hop_length=256)
S_clean = librosa.amplitude_to_db(np.abs(D_clean), ref=np.max)
librosa.display.specshow(S_clean, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
#librosa.display.specshow(S_clean, sr=16000, hop_length=512, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
axs[1].set_title("Enhanced Spectrogram")
plt.tight_layout()
return "enhanced.wav", fig
#with gr.Blocks() as demo:
# gr.Markdown(ABOUT)
# input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
# enhance_btn = gr.Button("Enhance")
# output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
# plot_output = gr.Plot(label="Spectrograms")
#
# enhance_btn.click(fn=enhance, inputs=input_audio, outputs=[output_audio, plot_output])
#
#demo.queue().launch()
with gr.Blocks() as demo:
gr.Markdown(ABOUT)
input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
model_choice = gr.Radio(
label="Choose Model (The use of VCTK+DNS is recommended)",
choices=["VCTK-Demand", "VCTK+DNS"],
value="VCTK-Demand"
)
enhance_btn = gr.Button("Enhance")
output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
plot_output = gr.Plot(label="Spectrograms")
enhance_btn.click(
fn=enhance,
inputs=[input_audio, model_choice],
outputs=[output_audio, plot_output]
)
gr.Markdown("**Note**: The current models are trained on 16kHz audio. Therefore, any input audio not sampled at 16kHz will be automatically resampled before enhancement.")
demo.queue().launch()