File size: 6,039 Bytes
3902a47
 
 
 
 
 
 
 
 
 
 
 
 
787e7f5
 
 
 
3902a47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
787e7f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3902a47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import shlex
import subprocess
import spaces
import torch
import gradio as gr

# install packages for mamba
def install_mamba():
    #subprocess.run(shlex.split("pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118"))
    subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
    #subprocess.run(shlex.split("pip install numpy==1.26.4"))

def clone_github():
    subprocess.run([
        "git", "clone",
        f"https://RoyChao19477:{os.environ['GITHUB_TOKEN']}@github.com/RoyChao19477/for_HF_AVSEMamba.git"
    ])

install_mamba()
clone_github()

ABOUT = """
# SEMamba: Speech Enhancement
A Mamba-based model that denoises real-world audio.
Upload or record a noisy clip and click **Enhance** to hear + see its spectrogram.
"""


import torch
import yaml
import librosa
import librosa.display
import matplotlib
import numpy as np
import soundfile as sf
import matplotlib.pyplot as plt
from models.stfts    import mag_phase_stft, mag_phase_istft
from models.generator import SEMamba
from models.pcs400   import cal_pcs
from ultralytics import YOLO
import supervision as sv



def dummy_fn(video):
    return video

model = YOLO("yolov8n.pt")  # or a face-specific checkpoint
results = model.predict("input_frame.jpg")[0]

# Filter only face (class 0 in COCO = 'person'; need a face-detection specific model if you want more precision)
faces = [b for b in results.boxes if b.cls == 0]

gr.Interface(fn=dummy_fn, inputs=gr.Video(source="webcam"), outputs="video").launch()kkkkkj


ckpt = "ckpts/SEMamba_advanced.pth"
cfg_f = "recipes/SEMamba_advanced.yaml"

# load config
with open(cfg_f, 'r') as f:
    cfg = yaml.safe_load(f)


# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda"
model  = SEMamba(cfg).to(device)
#sdict  = torch.load(ckpt, map_location=device)
#model.load_state_dict(sdict["generator"])
#model.eval()

@spaces.GPU
def enhance(filepath, model_name):
    # Load model based on selection
    ckpt_path = {
        "VCTK-Demand": "ckpts/SEMamba_advanced.pth",
        "VCTK+DNS": "ckpts/vd.pth"
    }[model_name]

    print("Loading:", ckpt_path)
    model.load_state_dict(torch.load(ckpt_path, map_location=device)["generator"])
    model.eval()
    with torch.no_grad():
        # load & resample
        wav, orig_sr = librosa.load(filepath, sr=None)
        noisy_wav = wav.copy()
        if orig_sr != 16000:
            wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=16000)
        x = torch.from_numpy(wav).float().to(device)
        norm = torch.sqrt(len(x)/torch.sum(x**2))
        #x = (x * norm).unsqueeze(0)
        x = (x * norm)

        # split into 4s segments (64000 samples)
        segment_len = 4 * 16000
        chunks = x.split(segment_len)
        enhanced_chunks = []

        for chunk in chunks:
            if len(chunk) < segment_len:
                #pad = torch.zeros(segment_len - len(chunk), device=chunk.device)
                pad = (torch.randn(segment_len - len(chunk), device=chunk.device) * 1e-4)
                chunk = torch.cat([chunk, pad])
            chunk = chunk.unsqueeze(0)

            amp, pha, _ = mag_phase_stft(chunk, 400, 100, 400, 0.3)
            amp2, pha2, _ = model(amp, pha)
            out = mag_phase_istft(amp2, pha2, 400, 100, 400, 0.3)
            out = (out / norm).squeeze(0)
            enhanced_chunks.append(out)

        out = torch.cat(enhanced_chunks)[:len(x)].cpu().numpy()  # trim padding

        # back to original rate
        if orig_sr != 16000:
            out = librosa.resample(out, orig_sr=16000, target_sr=orig_sr)

        # Normalize
        peak = np.max(np.abs(out))
        if peak > 0.05:
            out = out / peak * 0.85

        # write file
        sf.write("enhanced.wav", out, orig_sr)

        # spectrograms
        fig, axs = plt.subplots(1, 2, figsize=(16, 4))

        # noisy
        D_noisy = librosa.stft(noisy_wav, n_fft=512, hop_length=256)
        S_noisy = librosa.amplitude_to_db(np.abs(D_noisy), ref=np.max)
        librosa.display.specshow(S_noisy, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[0], vmax=0)
        axs[0].set_title("Noisy Spectrogram")

        # enhanced
        D_clean = librosa.stft(out, n_fft=512, hop_length=256)
        S_clean = librosa.amplitude_to_db(np.abs(D_clean), ref=np.max)
        librosa.display.specshow(S_clean, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
        #librosa.display.specshow(S_clean, sr=16000, hop_length=512, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
        axs[1].set_title("Enhanced Spectrogram")

        plt.tight_layout()

    return "enhanced.wav", fig

#with gr.Blocks() as demo:
#    gr.Markdown(ABOUT)
#    input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
#    enhance_btn = gr.Button("Enhance")
#    output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
#    plot_output = gr.Plot(label="Spectrograms")
#
#    enhance_btn.click(fn=enhance, inputs=input_audio, outputs=[output_audio, plot_output])
#
#demo.queue().launch()

with gr.Blocks() as demo:
    gr.Markdown(ABOUT)
    input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
    model_choice = gr.Radio(
        label="Choose Model (The use of VCTK+DNS is recommended)",
        choices=["VCTK-Demand", "VCTK+DNS"],
        value="VCTK-Demand"
    )
    enhance_btn = gr.Button("Enhance")
    output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
    plot_output = gr.Plot(label="Spectrograms")

    enhance_btn.click(
        fn=enhance,
        inputs=[input_audio, model_choice],
        outputs=[output_audio, plot_output]
    )
    gr.Markdown("**Note**: The current models are trained on 16kHz audio. Therefore, any input audio not sampled at 16kHz will be automatically resampled before enhancement.")

demo.queue().launch()