Spaces:
Sleeping
Sleeping
File size: 8,386 Bytes
bd9ffb1 2cb0aee bd9ffb1 23bc33a 14a8e2e bd9ffb1 2cb0aee bd9ffb1 2cb0aee bd9ffb1 2cb0aee bd9ffb1 2cb0aee bd9ffb1 2cb0aee bd9ffb1 2cb0aee b58f36c bf9a993 e4058c9 9b36609 bd9ffb1 2cb0aee bd9ffb1 69a1954 9f35394 12fb517 bd9ffb1 14a8e2e 50d2737 bd9ffb1 397df48 bd9ffb1 385567a bd9ffb1 2cb0aee bd9ffb1 2cb0aee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import shlex
import subprocess
import spaces
import torch
import os
import shutil
import glob
import gradio as gr
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# install packages for mamba
def install_mamba():
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
def clone_github():
subprocess.run([
"git", "clone",
f"https://RoyChao19477:{os.environ['GITHUB_TOKEN']}@github.com/RoyChao19477/for_HF_AVSEMamba.git",
])
# move all files except README.md
for item in glob.glob("for_HF_AVSEMamba/*"):
if os.path.basename(item) != "README.md":
if os.path.isdir(item):
shutil.move(item, ".")
else:
shutil.move(item, os.path.join(".", os.path.basename(item)))
#shutil.rmtree("tmp_repo")
#subprocess.run(["ls"], check=True)
install_mamba()
clone_github()
ABOUT = """
# SEMamba: Speech Enhancement
A Mamba-based model that denoises real-world audio.
Upload or record a noisy clip and click **Enhance** to hear + see its spectrogram.
"""
import torch
import ffmpeg
import torchaudio
import torchaudio.transforms as T
import yaml
import librosa
import librosa.display
import matplotlib
import numpy as np
import soundfile as sf
import matplotlib.pyplot as plt
from models.stfts import mag_phase_stft, mag_phase_istft
from models.generator import SEMamba
from models.pcs400 import cal_pcs
from ultralytics import YOLO
import supervision as sv
import gradio as gr
import cv2
import os
import tempfile
from ultralytics import YOLO
from moviepy import ImageSequenceClip
from scipy.io import wavfile
from avse_code import run_avse
from decord import VideoReader, cpu
from model import AVSEModule
from config import sampling_rate
import spaces
import time
import shutil
# Load model once globally
#ckpt_path = "ckpts/ep215_0906.oat.ckpt"
#model = AVSEModule.load_from_checkpoint(ckpt_path)
#avse_state_dict = torch.load("ckpts/ep215_0906.oat.ckpt")
CHUNK_SIZE_AUDIO = 48000 # 3 sec at 16kHz
CHUNK_SIZE_VIDEO = 75 # 25fps × 3 sec
@spaces.GPU
def run_avse_inference(video_path, audio_path):
avse_model = AVSEModule()
avse_state_dict = torch.load("ckpts/ep220_0908.oat.ckpt")
avse_model.load_state_dict(avse_state_dict, strict=True)
avse_model.to("cuda")
avse_model.eval()
estimated = run_avse(video_path, audio_path)
# Load audio
#noisy, _ = sf.read(audio_path, dtype='float32') # (N, )
#noisy = torch.tensor(noisy).unsqueeze(0) # (1, N)
noisy = wavfile.read(audio_path)[1].astype(np.float32) / (2 ** 15)
# Norm.
#noisy = noisy * (0.8 / np.max(np.abs(noisy)))
# Load grayscale video
vr = VideoReader(video_path, ctx=cpu(0))
frames = vr.get_batch(list(range(len(vr)))).asnumpy()
bg_frames = np.array([
cv2.cvtColor(frames[i], cv2.COLOR_RGB2GRAY) for i in range(len(frames))
]).astype(np.float32)
bg_frames /= 255.0
audio_chunks = [
noisy[i:i + CHUNK_SIZE_AUDIO]
for i in range(0, len(noisy), CHUNK_SIZE_AUDIO)
]
video_chunks = [
bg_frames[i:i + CHUNK_SIZE_VIDEO]
for i in range(0, len(bg_frames), CHUNK_SIZE_VIDEO)
]
min_len = min(len(audio_chunks), len(video_chunks)) # sync length
# Combine into input dict (match what model.enhance expects)
#data = {
# "noisy_audio": noisy,
# "video_frames": bg_frames[np.newaxis, ...]
#}
#with torch.no_grad():
# estimated = avse_model.enhance(data).reshape(-1)
estimated_chunks = []
with torch.no_grad():
for i in range(min_len):
chunk_data = {
"noisy_audio": audio_chunks[i],
"video_frames": video_chunks[i][np.newaxis, ...]
}
est = avse_model.enhance(chunk_data).reshape(-1)
estimated_chunks.append(est)
estimated = np.concatenate(estimated_chunks, axis=0)
# Save result
tmp_wav = audio_path.replace(".wav", "_enhanced.wav")
sf.write(tmp_wav, estimated, samplerate=sampling_rate)
return tmp_wav
def extract_resampled_audio(video_path, target_sr=16000):
# Step 1: extract audio via torchaudio
# (moviepy will still extract it to wav temp file)
tmp_audio_path = tempfile.mktemp(suffix=".wav")
subprocess.run(["ffmpeg", "-y", "-i", video_path, "-vn", "-acodec", "pcm_s16le", "-ar", "44100", tmp_audio_path])
# Step 2: Load and resample
waveform, sr = torchaudio.load(tmp_audio_path)
if sr != target_sr:
resampler = T.Resample(orig_freq=sr, new_freq=target_sr)
waveform = resampler(waveform)
# Step 3: Save resampled audio
resampled_audio_path = tempfile.mktemp(suffix="_16k.wav")
torchaudio.save(resampled_audio_path, waveform, sample_rate=target_sr)
return resampled_audio_path
@spaces.GPU
def yolo_detection(frame, verbose=False):
# Load face detector
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
return model(frame, verbose=verbose)[0]
@spaces.GPU
def extract_faces(video_file):
time.sleep(2)
cap = cv2.VideoCapture(video_file)
fps = cap.get(cv2.CAP_PROP_FPS)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
# Inference
#results = model(frame, verbose=False)[0]
results = yolo_detection(frame, verbose=False)
for box in results.boxes:
# version 1
# x1, y1, x2, y2 = map(int, box.xyxy[0])
# version 2
h, w, _ = frame.shape
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
pad_ratio = 0.5 # 30% padding
dx = (x2 - x1) * pad_ratio
dy = (y2 - y1) * pad_ratio
x1 = int(max(0, x1 - dx))
y1 = int(max(0, y1 - dy))
x2 = int(min(w, x2 + dx))
y2 = int(min(h, y2 + dy))
# Added for v3
shift_down = int(0.1 * (y2 - y1))
y1 = int(min(max(0, y1 + shift_down), h))
y2 = int(min(max(0, y2 + shift_down), h))
face_crop = frame[y1:y2, x1:x2]
if face_crop.size != 0:
resized = cv2.resize(face_crop, (224, 224))
frames.append(resized)
#h_crop, w_crop = face_crop.shape[:2]
#side = min(h_crop, w_crop)
#start_y = (h_crop - side) // 2
#start_x = (w_crop - side) // 2
#square_crop = face_crop[start_y:start_y+side, start_x:start_x+side]
#resized = cv2.resize(square_crop, (224, 224))
#frames.append(resized)
break # only one face per frame
cap.release()
# Save as video
tmpdir = tempfile.mkdtemp()
output_path = os.path.join(tmpdir, "face_only_video.mp4")
#clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=25)
#clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=fps)
clip = ImageSequenceClip(
[cv2.cvtColor(cv2.resize(f, (224, 224)), cv2.COLOR_BGR2RGB) for f in frames],
fps=25
)
clip.write_videofile(output_path, codec="libx264", audio=False, fps=25)
# Save audio from original, resampled to 16kHz
audio_path = os.path.join(tmpdir, "audio_16k.wav")
# Extract audio using ffmpeg-python (more robust than moviepy)
ffmpeg.input(video_file).output(
audio_path,
ar=16000, # resample to 16k
ac=1, # mono
format='wav',
vn=None # no video
).run(overwrite_output=True)
# ------------------------------- #
# AVSE models
enhanced_audio_path = run_avse_inference(output_path, audio_path)
return output_path, enhanced_audio_path
#return output_path, audio_path
iface = gr.Interface(
fn=extract_faces,
inputs=gr.Video(label="Upload or record your video"),
outputs=[
gr.Video(label="Detected Face Only Video"),
#gr.Audio(label="Extracted Audio (16kHz)", type="filepath"),
gr.Audio(label="Enhanced Audio", type="filepath")
],
title="Face Detector",
description="Upload or record a video. We'll crop face regions and return a face-only video and its 16kHz audio.",
api_name="/predict"
)
iface.launch()
|