Spaces:
Runtime error
Runtime error
ZeroGPU (#3)
Browse files- Update for ZeroGPU (c30a512011b66584ac56346cb222264010300aaa)
Co-authored-by: hysts <[email protected]>
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
from functools import partial
|
| 2 |
import os
|
| 3 |
from PIL import Image, ImageOps
|
| 4 |
import random
|
|
@@ -46,6 +45,7 @@ If you have uploaded one of your own images, it is very likely that you will nee
|
|
| 46 |
You should verify that the preprocessed image is object-centric (i.e., clearly contains a single object) and has white background.
|
| 47 |
'''
|
| 48 |
|
|
|
|
| 49 |
def center_and_square_image(pil_image_rgba, drags):
|
| 50 |
image = pil_image_rgba
|
| 51 |
alpha = np.array(image)[:, :, 3] # Extract the alpha channel
|
|
@@ -70,11 +70,13 @@ def center_and_square_image(pil_image_rgba, drags):
|
|
| 70 |
image = image.resize((256, 256), Image.Resampling.LANCZOS)
|
| 71 |
return image, new_drags
|
| 72 |
|
|
|
|
| 73 |
def sam_init():
|
| 74 |
sam_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "sam_vit_h_4b8939.pth")
|
| 75 |
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to("cuda"))
|
| 76 |
return predictor
|
| 77 |
|
|
|
|
| 78 |
def model_init():
|
| 79 |
model_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "drag-a-part-final.pt")
|
| 80 |
model = UNet2DDragConditionModel.from_pretrained_sd(
|
|
@@ -94,13 +96,24 @@ def model_init():
|
|
| 94 |
model.load_state_dict(torch.load(model_checkpoint, map_location="cpu")["model"])
|
| 95 |
return model.to("cuda")
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
@spaces.GPU(duration=10)
|
| 98 |
-
def sam_segment(
|
| 99 |
image = np.asarray(input_image)
|
| 100 |
-
|
| 101 |
|
| 102 |
with torch.no_grad():
|
| 103 |
-
masks_bbox, _, _ =
|
| 104 |
point_coords=foreground_points if foreground_points is not None else None,
|
| 105 |
point_labels=np.ones(len(foreground_points)) if foreground_points is not None else None,
|
| 106 |
multimask_output=True
|
|
@@ -114,6 +127,7 @@ def sam_segment(predictor, input_image, drags, foreground_points=None):
|
|
| 114 |
|
| 115 |
return out_image, new_drags
|
| 116 |
|
|
|
|
| 117 |
def get_point(img, sel_pix, evt: gr.SelectData):
|
| 118 |
sel_pix.append(evt.index)
|
| 119 |
points = []
|
|
@@ -136,10 +150,12 @@ def get_point(img, sel_pix, evt: gr.SelectData):
|
|
| 136 |
points = []
|
| 137 |
return img if isinstance(img, np.ndarray) else np.array(img)
|
| 138 |
|
|
|
|
| 139 |
def clear_drag():
|
| 140 |
return []
|
| 141 |
|
| 142 |
-
|
|
|
|
| 143 |
if img is None:
|
| 144 |
gr.Warning("No image is specified. Please specify an image before preprocessing.")
|
| 145 |
return None, drags
|
|
@@ -157,7 +173,6 @@ def preprocess_image(SAM_predictor, img, chk_group, drags):
|
|
| 157 |
img_np = np.array(img)
|
| 158 |
rgb_img = img_np[..., :3]
|
| 159 |
img, new_drags = sam_segment(
|
| 160 |
-
SAM_predictor,
|
| 161 |
rgb_img,
|
| 162 |
drags,
|
| 163 |
foreground_points=foreground_points,
|
|
@@ -173,8 +188,6 @@ def preprocess_image(SAM_predictor, img, chk_group, drags):
|
|
| 173 |
|
| 174 |
|
| 175 |
def single_image_sample(
|
| 176 |
-
model,
|
| 177 |
-
diffusion,
|
| 178 |
x_cond,
|
| 179 |
x_cond_clip,
|
| 180 |
rel,
|
|
@@ -183,7 +196,6 @@ def single_image_sample(
|
|
| 183 |
drags,
|
| 184 |
hidden_cls,
|
| 185 |
num_steps=50,
|
| 186 |
-
vae=None,
|
| 187 |
):
|
| 188 |
z = torch.randn(2, 4, 32, 32).to("cuda")
|
| 189 |
|
|
@@ -231,16 +243,11 @@ def single_image_sample(
|
|
| 231 |
|
| 232 |
|
| 233 |
@spaces.GPU(duration=20)
|
| 234 |
-
def generate_image(
|
| 235 |
if img_cond is None:
|
| 236 |
gr.Warning("Please preprocess the image first.")
|
| 237 |
return None
|
| 238 |
|
| 239 |
-
model = model.to("cuda")
|
| 240 |
-
vae = vae.to("cuda")
|
| 241 |
-
clip_model = clip_model.to("cuda")
|
| 242 |
-
clip_vit = clip_vit.to("cuda")
|
| 243 |
-
|
| 244 |
with torch.no_grad():
|
| 245 |
torch.manual_seed(seed)
|
| 246 |
np.random.seed(seed)
|
|
@@ -279,8 +286,6 @@ def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion,
|
|
| 279 |
break
|
| 280 |
|
| 281 |
return single_image_sample(
|
| 282 |
-
model.to("cuda"),
|
| 283 |
-
diffusion,
|
| 284 |
x_cond,
|
| 285 |
cond_clip_features,
|
| 286 |
rel,
|
|
@@ -289,22 +294,9 @@ def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion,
|
|
| 289 |
drags,
|
| 290 |
cls_embedding,
|
| 291 |
num_steps=50,
|
| 292 |
-
vae=vae,
|
| 293 |
)
|
| 294 |
|
| 295 |
|
| 296 |
-
sam_predictor = sam_init()
|
| 297 |
-
model = model_init()
|
| 298 |
-
|
| 299 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema").to('cuda')
|
| 300 |
-
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to('cuda')
|
| 301 |
-
clip_vit = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14").to('cuda')
|
| 302 |
-
image_processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 303 |
-
diffusion = create_diffusion(
|
| 304 |
-
timestep_respacing="",
|
| 305 |
-
learn_sigma=False,
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
with gr.Blocks(title=TITLE) as demo:
|
| 309 |
gr.Markdown("# " + DESCRIPTION)
|
| 310 |
|
|
@@ -378,7 +370,7 @@ with gr.Blocks(title=TITLE) as demo:
|
|
| 378 |
value="Preprocess Input Image",
|
| 379 |
)
|
| 380 |
preprocess_button.click(
|
| 381 |
-
fn=
|
| 382 |
inputs=[input_image, preprocess_chk_group, drags],
|
| 383 |
outputs=[processed_image, drags],
|
| 384 |
queue=True,
|
|
@@ -407,7 +399,7 @@ with gr.Blocks(title=TITLE) as demo:
|
|
| 407 |
value="Generate Image",
|
| 408 |
)
|
| 409 |
generate_button.click(
|
| 410 |
-
fn=
|
| 411 |
inputs=[processed_image, seed, cfg_scale, drags],
|
| 412 |
outputs=[generated_image],
|
| 413 |
)
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
from PIL import Image, ImageOps
|
| 3 |
import random
|
|
|
|
| 45 |
You should verify that the preprocessed image is object-centric (i.e., clearly contains a single object) and has white background.
|
| 46 |
'''
|
| 47 |
|
| 48 |
+
|
| 49 |
def center_and_square_image(pil_image_rgba, drags):
|
| 50 |
image = pil_image_rgba
|
| 51 |
alpha = np.array(image)[:, :, 3] # Extract the alpha channel
|
|
|
|
| 70 |
image = image.resize((256, 256), Image.Resampling.LANCZOS)
|
| 71 |
return image, new_drags
|
| 72 |
|
| 73 |
+
|
| 74 |
def sam_init():
|
| 75 |
sam_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "sam_vit_h_4b8939.pth")
|
| 76 |
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to("cuda"))
|
| 77 |
return predictor
|
| 78 |
|
| 79 |
+
|
| 80 |
def model_init():
|
| 81 |
model_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "drag-a-part-final.pt")
|
| 82 |
model = UNet2DDragConditionModel.from_pretrained_sd(
|
|
|
|
| 96 |
model.load_state_dict(torch.load(model_checkpoint, map_location="cpu")["model"])
|
| 97 |
return model.to("cuda")
|
| 98 |
|
| 99 |
+
|
| 100 |
+
sam_predictor = sam_init()
|
| 101 |
+
model = model_init()
|
| 102 |
+
|
| 103 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema").to('cuda')
|
| 104 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to('cuda')
|
| 105 |
+
clip_vit = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14").to('cuda')
|
| 106 |
+
image_processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 107 |
+
diffusion = create_diffusion(timestep_respacing="", learn_sigma=False)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
@spaces.GPU(duration=10)
|
| 111 |
+
def sam_segment(input_image, drags, foreground_points=None):
|
| 112 |
image = np.asarray(input_image)
|
| 113 |
+
sam_predictor.set_image(image)
|
| 114 |
|
| 115 |
with torch.no_grad():
|
| 116 |
+
masks_bbox, _, _ = sam_predictor.predict(
|
| 117 |
point_coords=foreground_points if foreground_points is not None else None,
|
| 118 |
point_labels=np.ones(len(foreground_points)) if foreground_points is not None else None,
|
| 119 |
multimask_output=True
|
|
|
|
| 127 |
|
| 128 |
return out_image, new_drags
|
| 129 |
|
| 130 |
+
|
| 131 |
def get_point(img, sel_pix, evt: gr.SelectData):
|
| 132 |
sel_pix.append(evt.index)
|
| 133 |
points = []
|
|
|
|
| 150 |
points = []
|
| 151 |
return img if isinstance(img, np.ndarray) else np.array(img)
|
| 152 |
|
| 153 |
+
|
| 154 |
def clear_drag():
|
| 155 |
return []
|
| 156 |
|
| 157 |
+
|
| 158 |
+
def preprocess_image(img, chk_group, drags):
|
| 159 |
if img is None:
|
| 160 |
gr.Warning("No image is specified. Please specify an image before preprocessing.")
|
| 161 |
return None, drags
|
|
|
|
| 173 |
img_np = np.array(img)
|
| 174 |
rgb_img = img_np[..., :3]
|
| 175 |
img, new_drags = sam_segment(
|
|
|
|
| 176 |
rgb_img,
|
| 177 |
drags,
|
| 178 |
foreground_points=foreground_points,
|
|
|
|
| 188 |
|
| 189 |
|
| 190 |
def single_image_sample(
|
|
|
|
|
|
|
| 191 |
x_cond,
|
| 192 |
x_cond_clip,
|
| 193 |
rel,
|
|
|
|
| 196 |
drags,
|
| 197 |
hidden_cls,
|
| 198 |
num_steps=50,
|
|
|
|
| 199 |
):
|
| 200 |
z = torch.randn(2, 4, 32, 32).to("cuda")
|
| 201 |
|
|
|
|
| 243 |
|
| 244 |
|
| 245 |
@spaces.GPU(duration=20)
|
| 246 |
+
def generate_image(img_cond, seed, cfg_scale, drags_list):
|
| 247 |
if img_cond is None:
|
| 248 |
gr.Warning("Please preprocess the image first.")
|
| 249 |
return None
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
with torch.no_grad():
|
| 252 |
torch.manual_seed(seed)
|
| 253 |
np.random.seed(seed)
|
|
|
|
| 286 |
break
|
| 287 |
|
| 288 |
return single_image_sample(
|
|
|
|
|
|
|
| 289 |
x_cond,
|
| 290 |
cond_clip_features,
|
| 291 |
rel,
|
|
|
|
| 294 |
drags,
|
| 295 |
cls_embedding,
|
| 296 |
num_steps=50,
|
|
|
|
| 297 |
)
|
| 298 |
|
| 299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
with gr.Blocks(title=TITLE) as demo:
|
| 301 |
gr.Markdown("# " + DESCRIPTION)
|
| 302 |
|
|
|
|
| 370 |
value="Preprocess Input Image",
|
| 371 |
)
|
| 372 |
preprocess_button.click(
|
| 373 |
+
fn=preprocess_image,
|
| 374 |
inputs=[input_image, preprocess_chk_group, drags],
|
| 375 |
outputs=[processed_image, drags],
|
| 376 |
queue=True,
|
|
|
|
| 399 |
value="Generate Image",
|
| 400 |
)
|
| 401 |
generate_button.click(
|
| 402 |
+
fn=generate_image,
|
| 403 |
inputs=[processed_image, seed, cfg_scale, drags],
|
| 404 |
outputs=[generated_image],
|
| 405 |
)
|