import streamlit as st from transformers import pipeline, BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer import torch print(torch.cuda.is_available()) tokenizer_name = "tiiuae/falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token # Load the Hugging Face model for chatbot bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True) model = AutoModelForCausalLM.from_pretrained( "rawkintrevo/hf-sme-falcon-7b", revision="v0.0.1", quantization_config=bnb_config, torch_dtype=torch.float16, trust_remote_code=True ) chatbot = pipeline("conversational", model=model, tokenizer=tokenizer ) # Streamlit app title st.title("Hugging Face Chatbot") # User input for chat user_input = st.text_input("You:", "") if st.button("Ask"): if user_input: # Generate a response from the chatbot model response = chatbot(user_input)[0]['generated_text'] st.text("Chatbot:") st.write(response) # Example conversation st.subheader("Example Conversation:") st.write("You: Hi, how are you?") st.write("Chatbot: I'm good, how can I help you today?")