Spaces:
Runtime error
Runtime error
smaller faiss db
Browse files- app.py +4 -4
- requirements-backup.txt +95 -0
- vector_loader.py +37 -234
app.py
CHANGED
@@ -35,7 +35,7 @@ OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
|
35 |
|
36 |
def load_knowledgeBase():
|
37 |
embeddings=OpenAIEmbeddings(api_key=OPENAI_API_KEY)
|
38 |
-
DB_FAISS_PATH = "vectorstore/db_faiss/"
|
39 |
db = FAISS.load_local(
|
40 |
DB_FAISS_PATH,
|
41 |
embeddings,
|
@@ -45,10 +45,10 @@ def load_knowledgeBase():
|
|
45 |
return db
|
46 |
def load_prompt():
|
47 |
prompt = """ You are helping students to pass NJMVC Knowledge Test. Provide a Single multiple choice question with 4 options to choose from.
|
48 |
-
Use the information from context
|
49 |
context = {context}
|
50 |
question = {question}
|
51 |
-
if the
|
52 |
"""
|
53 |
prompt = ChatPromptTemplate.from_template(prompt)
|
54 |
return prompt
|
@@ -128,7 +128,7 @@ def main():
|
|
128 |
text_chunks = get_chunk_text(question)
|
129 |
|
130 |
db = FAISS.load_local(folder_path="./vectorstore/db_faiss/",embeddings=OpenAIEmbeddings(api_key=OPENAI_API_KEY),allow_dangerous_deserialization=True, index_name="njmvc_Index")
|
131 |
-
searchDocs = db.similarity_search(
|
132 |
|
133 |
similar_embeddings=FAISS.from_documents(documents=searchDocs, embedding=OpenAIEmbeddings(api_key=OPENAI_API_KEY))
|
134 |
#creating the chain for integrating llm,prompt,stroutputparser
|
|
|
35 |
|
36 |
def load_knowledgeBase():
|
37 |
embeddings=OpenAIEmbeddings(api_key=OPENAI_API_KEY)
|
38 |
+
DB_FAISS_PATH = "./vectorstore/db_faiss/"
|
39 |
db = FAISS.load_local(
|
40 |
DB_FAISS_PATH,
|
41 |
embeddings,
|
|
|
45 |
return db
|
46 |
def load_prompt():
|
47 |
prompt = """ You are helping students to pass NJMVC Knowledge Test. Provide a Single multiple choice question with 4 options to choose from.
|
48 |
+
Use the information from context provided below to provide the question and answer choices.
|
49 |
context = {context}
|
50 |
question = {question}
|
51 |
+
if the context is not available, say I cannot give Question"
|
52 |
"""
|
53 |
prompt = ChatPromptTemplate.from_template(prompt)
|
54 |
return prompt
|
|
|
128 |
text_chunks = get_chunk_text(question)
|
129 |
|
130 |
db = FAISS.load_local(folder_path="./vectorstore/db_faiss/",embeddings=OpenAIEmbeddings(api_key=OPENAI_API_KEY),allow_dangerous_deserialization=True, index_name="njmvc_Index")
|
131 |
+
searchDocs = db.similarity_search(question)
|
132 |
|
133 |
similar_embeddings=FAISS.from_documents(documents=searchDocs, embedding=OpenAIEmbeddings(api_key=OPENAI_API_KEY))
|
134 |
#creating the chain for integrating llm,prompt,stroutputparser
|
requirements-backup.txt
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohttp==3.9.3
|
2 |
+
aiosignal==1.3.1
|
3 |
+
altair==5.2.0
|
4 |
+
annotated-types==0.6.0
|
5 |
+
anyio==4.3.0
|
6 |
+
async-timeout==4.0.3
|
7 |
+
attrs==23.2.0
|
8 |
+
blinker==1.7.0
|
9 |
+
cachetools==5.3.3
|
10 |
+
certifi==2024.2.2
|
11 |
+
cffi==1.16.0
|
12 |
+
charset-normalizer==3.3.2
|
13 |
+
click==8.1.7
|
14 |
+
cryptography==42.0.5
|
15 |
+
dataclasses-json==0.6.4
|
16 |
+
datasets==2.18.0
|
17 |
+
dill==0.3.8
|
18 |
+
distro==1.9.0
|
19 |
+
exceptiongroup==1.2.0
|
20 |
+
faiss-cpu==1.8.0
|
21 |
+
filelock==3.13.1
|
22 |
+
frozenlist==1.4.1
|
23 |
+
fsspec==2024.2.0
|
24 |
+
gitdb==4.0.11
|
25 |
+
GitPython==3.1.42
|
26 |
+
greenlet==3.0.3
|
27 |
+
h11==0.14.0
|
28 |
+
httpcore==1.0.4
|
29 |
+
httpx==0.27.0
|
30 |
+
huggingface-hub==0.21.4
|
31 |
+
idna==3.6
|
32 |
+
Jinja2==3.1.3
|
33 |
+
jsonpatch==1.33
|
34 |
+
jsonpointer==2.4
|
35 |
+
jsonschema==4.21.1
|
36 |
+
jsonschema-specifications==2023.12.1
|
37 |
+
langchain==0.1.13
|
38 |
+
langchain-community==0.0.29
|
39 |
+
langchain-core==0.1.33
|
40 |
+
langchain-openai==0.1.1
|
41 |
+
langchain-text-splitters==0.0.1
|
42 |
+
langsmith==0.1.31
|
43 |
+
markdown-it-py==3.0.0
|
44 |
+
MarkupSafe==2.1.5
|
45 |
+
marshmallow==3.21.1
|
46 |
+
mdurl==0.1.2
|
47 |
+
multidict==6.0.5
|
48 |
+
multiprocess==0.70.16
|
49 |
+
mypy-extensions==1.0.0
|
50 |
+
numpy==1.26.4
|
51 |
+
openai==1.14.2
|
52 |
+
orjson==3.9.15
|
53 |
+
packaging==23.2
|
54 |
+
pandas==2.2.1
|
55 |
+
pdf2image==1.17.0
|
56 |
+
pdfminer.six==20231228
|
57 |
+
pdfplumber==0.11.0
|
58 |
+
pillow==10.2.0
|
59 |
+
protobuf==4.25.3
|
60 |
+
pyarrow==15.0.2
|
61 |
+
pyarrow-hotfix==0.6
|
62 |
+
pycparser==2.21
|
63 |
+
pydantic==2.6.4
|
64 |
+
pydantic_core==2.16.3
|
65 |
+
pydeck==0.8.1b0
|
66 |
+
Pygments==2.17.2
|
67 |
+
PyPDF2==3.0.1
|
68 |
+
pypdfium2==4.28.0
|
69 |
+
pytesseract==0.3.10
|
70 |
+
python-dateutil==2.9.0.post0
|
71 |
+
python-dotenv==1.0.1
|
72 |
+
pytz==2024.1
|
73 |
+
PyYAML==6.0.1
|
74 |
+
referencing==0.34.0
|
75 |
+
regex==2023.12.25
|
76 |
+
requests==2.31.0
|
77 |
+
rich==13.7.1
|
78 |
+
rpds-py==0.18.0
|
79 |
+
six==1.16.0
|
80 |
+
smmap==5.0.1
|
81 |
+
sniffio==1.3.1
|
82 |
+
SQLAlchemy==2.0.28
|
83 |
+
streamlit==1.32.2
|
84 |
+
tenacity==8.2.3
|
85 |
+
tiktoken==0.6.0
|
86 |
+
toml==0.10.2
|
87 |
+
toolz==0.12.1
|
88 |
+
tornado==6.4
|
89 |
+
tqdm==4.66.2
|
90 |
+
typing-inspect==0.9.0
|
91 |
+
typing_extensions==4.10.0
|
92 |
+
tzdata==2024.1
|
93 |
+
urllib3==2.2.1
|
94 |
+
xxhash==3.4.1
|
95 |
+
yarl==1.9.4
|
vector_loader.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
from langchain_community.document_loaders import PyPDFLoader
|
2 |
-
from
|
3 |
from langchain_community.vectorstores import FAISS
|
|
|
4 |
from langchain_openai import OpenAIEmbeddings
|
|
|
|
|
5 |
import PyPDF2
|
6 |
from PyPDF2 import PdfReader
|
7 |
import pdfplumber
|
@@ -18,248 +21,48 @@ from dotenv import load_dotenv
|
|
18 |
load_dotenv()
|
19 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
table_string = table_string[:-1]
|
44 |
-
return table_string
|
45 |
-
|
46 |
-
|
47 |
-
# Create a function to check if the element is in any tables present in the page
|
48 |
-
def is_element_inside_any_table(element, page ,tables):
|
49 |
-
x0, y0up, x1, y1up = element.bbox
|
50 |
-
# Change the cordinates because the pdfminer counts from the botton to top of the page
|
51 |
-
y0 = page.bbox[3] - y1up
|
52 |
-
y1 = page.bbox[3] - y0up
|
53 |
-
for table in tables:
|
54 |
-
tx0, ty0, tx1, ty1 = table.bbox
|
55 |
-
if tx0 <= x0 <= x1 <= tx1 and ty0 <= y0 <= y1 <= ty1:
|
56 |
-
return True
|
57 |
-
return False
|
58 |
-
|
59 |
-
# Function to find the table for a given element
|
60 |
-
def find_table_for_element(element, page ,tables):
|
61 |
-
x0, y0up, x1, y1up = element.bbox
|
62 |
-
# Change the cordinates because the pdfminer counts from the botton to top of the page
|
63 |
-
y0 = page.bbox[3] - y1up
|
64 |
-
y1 = page.bbox[3] - y0up
|
65 |
-
for i, table in enumerate(tables):
|
66 |
-
tx0, ty0, tx1, ty1 = table.bbox
|
67 |
-
if tx0 <= x0 <= x1 <= tx1 and ty0 <= y0 <= y1 <= ty1:
|
68 |
-
return i # Return the index of the table
|
69 |
-
return None
|
70 |
-
|
71 |
-
|
72 |
-
def text_extraction(element):
|
73 |
-
# Extracting the text from the in line text element
|
74 |
-
line_text = element.get_text()
|
75 |
-
|
76 |
-
# Find the formats of the text
|
77 |
-
# Initialize the list with all the formats appeared in the line of text
|
78 |
-
line_formats = []
|
79 |
-
for text_line in element:
|
80 |
-
if isinstance(text_line, LTTextContainer):
|
81 |
-
# Iterating through each character in the line of text
|
82 |
-
for character in text_line:
|
83 |
-
if isinstance(character, LTChar):
|
84 |
-
# Append the font name of the character
|
85 |
-
#line_formats.append(character.fontname)
|
86 |
-
# Append the font size of the character
|
87 |
-
#line_formats.append(character.size)
|
88 |
-
line_formats.append("")
|
89 |
-
|
90 |
-
# Find the unique font sizes and names in the line
|
91 |
-
format_per_line = list(set(line_formats))
|
92 |
-
|
93 |
-
# Return a tuple with the text in each line along with its format
|
94 |
-
return (line_text, format_per_line)
|
95 |
-
|
96 |
-
|
97 |
-
# Create a function to crop the image elements from PDFs
|
98 |
-
def crop_image(element, pageObj):
|
99 |
-
# Get the coordinates to crop the image from PDF
|
100 |
-
[image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1]
|
101 |
-
# Crop the page using coordinates (left, bottom, right, top)
|
102 |
-
pageObj.mediabox.lower_left = (image_left, image_bottom)
|
103 |
-
pageObj.mediabox.upper_right = (image_right, image_top)
|
104 |
-
# Save the cropped page to a new PDF
|
105 |
-
cropped_pdf_writer = PyPDF2.PdfWriter()
|
106 |
-
cropped_pdf_writer.add_page(pageObj)
|
107 |
-
# Save the cropped PDF to a new file
|
108 |
-
with open('cropped_image.pdf', 'wb') as cropped_pdf_file:
|
109 |
-
cropped_pdf_writer.write(cropped_pdf_file)
|
110 |
-
|
111 |
-
# Create a function to convert the PDF to images
|
112 |
-
def convert_to_images(input_file,):
|
113 |
-
images = convert_from_path(input_file)
|
114 |
-
image = images[0]
|
115 |
-
output_file = 'PDF_image.png'
|
116 |
-
image.save(output_file, 'PNG')
|
117 |
-
|
118 |
-
# Create a function to read text from images
|
119 |
-
def image_to_text(image_path):
|
120 |
-
# Read the image
|
121 |
-
img = Image.open(image_path)
|
122 |
-
# Extract the text from the image
|
123 |
-
text = pytesseract.image_to_string(img)
|
124 |
-
return text
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
def read_file_get_prompts(file_name):
|
129 |
-
if file_name is not None:
|
130 |
-
|
131 |
-
# Find the PDF path
|
132 |
-
pdf_path = file_name # '/content/data/'+file_name+".pdf"
|
133 |
-
pdfReaded = PyPDF2.PdfReader(file_name)
|
134 |
-
|
135 |
-
# Create the dictionary to extract text from each image
|
136 |
-
text_per_page = {}
|
137 |
-
# Create a boolean variable for image detection
|
138 |
-
image_flag = False
|
139 |
-
|
140 |
-
number_of_pages = len(list(extract_pages(file_name)))
|
141 |
-
result = ''
|
142 |
-
|
143 |
-
# We extract the pages from the PDF
|
144 |
-
for pagenum, page in enumerate(extract_pages(file_name)):
|
145 |
-
|
146 |
-
# Initialize the variables needed for the text extraction from the page
|
147 |
-
pageObj = pdfReaded.pages[pagenum]
|
148 |
-
page_text = []
|
149 |
-
line_format = []
|
150 |
-
text_from_images = []
|
151 |
-
text_from_tables = []
|
152 |
-
page_content = []
|
153 |
-
# Initialize the number of the examined tables
|
154 |
-
table_in_page= -1
|
155 |
-
# Open the pdf file
|
156 |
-
pdf = pdfplumber.open(pdf_path)
|
157 |
-
# Find the examined page
|
158 |
-
page_tables = pdf.pages[pagenum]
|
159 |
-
# Find the number of tables in the page
|
160 |
-
tables = page_tables.find_tables()
|
161 |
-
if len(tables)!=0:
|
162 |
-
table_in_page = 0
|
163 |
-
|
164 |
-
# Extracting the tables of the page
|
165 |
-
for table_num in range(len(tables)):
|
166 |
-
# Extract the information of the table
|
167 |
-
table = extract_table(pdf_path, pagenum, table_num)
|
168 |
-
# Convert the table information in structured string format
|
169 |
-
table_string = table_converter(table)
|
170 |
-
# Append the table string into a list
|
171 |
-
text_from_tables.append(table_string)
|
172 |
-
|
173 |
-
# Find all the elements
|
174 |
-
page_elements = [(element.y1, element) for element in page._objs]
|
175 |
-
# Sort all the element as they appear in the page
|
176 |
-
page_elements.sort(key=lambda a: a[0], reverse=True)
|
177 |
-
|
178 |
-
|
179 |
-
# Find the elements that composed a page
|
180 |
-
for i,component in enumerate(page_elements):
|
181 |
-
# Extract the element of the page layout
|
182 |
-
element = component[1]
|
183 |
-
|
184 |
-
# Check the elements for tables
|
185 |
-
if table_in_page == -1:
|
186 |
-
pass
|
187 |
-
else:
|
188 |
-
if is_element_inside_any_table(element, page ,tables):
|
189 |
-
table_found = find_table_for_element(element,page ,tables)
|
190 |
-
if table_found == table_in_page and table_found != None:
|
191 |
-
page_content.append(text_from_tables[table_in_page])
|
192 |
-
#page_text.append('table')
|
193 |
-
#line_format.append('table')
|
194 |
-
table_in_page+=1
|
195 |
-
# Pass this iteration because the content of this element was extracted from the tables
|
196 |
-
continue
|
197 |
-
|
198 |
-
if not is_element_inside_any_table(element,page,tables):
|
199 |
-
|
200 |
-
# Check if the element is text element
|
201 |
-
if isinstance(element, LTTextContainer):
|
202 |
-
# Use the function to extract the text and format for each text element
|
203 |
-
(line_text, format_per_line) = text_extraction(element)
|
204 |
-
# Append the text of each line to the page text
|
205 |
-
page_text.append(line_text)
|
206 |
-
# Append the format for each line containing text
|
207 |
-
line_format.append(format_per_line)
|
208 |
-
page_content.append(line_text)
|
209 |
-
|
210 |
-
|
211 |
-
# Check the elements for images
|
212 |
-
if isinstance(element, LTFigure):
|
213 |
-
# Crop the image from PDF
|
214 |
-
crop_image(element, pageObj)
|
215 |
-
# Convert the croped pdf to image
|
216 |
-
convert_to_images('cropped_image.pdf')
|
217 |
-
# Extract the text from image
|
218 |
-
image_text = image_to_text('PDF_image.png')
|
219 |
-
image_text = "" # removed to remove the errors with image
|
220 |
-
text_from_images.append(image_text)
|
221 |
-
page_content.append(image_text)
|
222 |
-
# Add a placeholder in the text and format lists
|
223 |
-
#page_text.append('image')
|
224 |
-
#line_format.append('image')
|
225 |
-
# Update the flag for image detection
|
226 |
-
image_flag = True
|
227 |
-
|
228 |
-
|
229 |
-
# Create the key of the dictionary
|
230 |
-
dctkey = 'Page_'+str(pagenum)
|
231 |
-
print(dctkey)
|
232 |
-
|
233 |
-
# Add the list of list as value of the page key
|
234 |
-
#text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
|
235 |
-
text_per_page[dctkey]= [page_text, text_from_images,text_from_tables, page_content]
|
236 |
-
#result = result.join(page_text).join(line_format).join(text_from_images).join(text_from_tables).join(page_content)
|
237 |
-
result = " "
|
238 |
-
for t in range(number_of_pages):
|
239 |
-
page = 'Page_'+str(t)
|
240 |
-
#result = result.join(map(str, text_per_page[page]))
|
241 |
-
for q in range(len(text_per_page[page])):
|
242 |
-
#print(f"{''.join(map(str, text_per_page[page][q]))}")
|
243 |
-
result = result + f"{''.join(map(str, text_per_page[page][q]))}"
|
244 |
-
|
245 |
-
return result
|
246 |
-
|
247 |
-
return True
|
248 |
|
249 |
def save_to_vector_store(text):
|
250 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
253 |
vectorstore.save_local(DB_FAISS_PATH, index_name="njmvc_Index")
|
254 |
#create a new file named vectorstore in your current directory.
|
255 |
if __name__=="__main__":
|
256 |
-
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
257 |
file_name = "./data/drivermanual-2-small.pdf"
|
258 |
#loader=read_file_get_prompts(file_name)
|
259 |
-
text=read_file_get_prompts(file_name)
|
|
|
260 |
#pdfReaded = PyPDF2.PdfReader(file_name)
|
261 |
#docs=loader.load()
|
262 |
-
save_to_vector_store(text)
|
263 |
#save_to_vector_store(text)
|
|
|
264 |
|
265 |
|
|
|
1 |
from langchain_community.document_loaders import PyPDFLoader
|
2 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain_community.document_loaders import TextLoader
|
5 |
from langchain_openai import OpenAIEmbeddings
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
|
8 |
import PyPDF2
|
9 |
from PyPDF2 import PdfReader
|
10 |
import pdfplumber
|
|
|
21 |
load_dotenv()
|
22 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
23 |
|
24 |
+
def extract_text_from_pdf(pdf_path):
|
25 |
+
# Open the PDF file
|
26 |
+
with open(pdf_path, 'rb') as pdf_file:
|
27 |
+
# Read the PDF file
|
28 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
29 |
+
# Get the number of pages in the PDF
|
30 |
+
num_pages = len(pdf_reader.pages)
|
31 |
+
# Initialize an empty string to store the text
|
32 |
+
full_text = ''
|
33 |
+
# Loop through each page and extract the text
|
34 |
+
for page_num in range(num_pages):
|
35 |
+
# Get the page object
|
36 |
+
#page = PyPDF2.PdfReader()
|
37 |
+
# Extract the text from the page
|
38 |
+
page_text = pdf_reader.pages[page_num].extract_text()
|
39 |
+
# Append the text to the full_text variable
|
40 |
+
full_text += page_text
|
41 |
+
# Return the full text of the PDF
|
42 |
+
return full_text
|
43 |
+
|
44 |
+
model = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1"
|
45 |
+
embeddings = HuggingFaceEmbeddings(model_name = model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def save_to_vector_store(text):
|
48 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300,
|
49 |
+
chunk_overlap=20,
|
50 |
+
length_function=len,
|
51 |
+
is_separator_regex=False)
|
52 |
+
docs = text_splitter.create_documents([text])
|
53 |
+
vectorstore = FAISS.from_documents(documents=docs, embedding=OpenAIEmbeddings(model="text-embedding-ada-002", api_key=OPENAI_API_KEY))
|
54 |
+
#vectorstore = FAISS.from_documents(documents=docs, embedding=embeddings)
|
55 |
vectorstore.save_local(DB_FAISS_PATH, index_name="njmvc_Index")
|
56 |
#create a new file named vectorstore in your current directory.
|
57 |
if __name__=="__main__":
|
58 |
+
DB_FAISS_PATH = './vectorstore/db_faiss/'
|
59 |
file_name = "./data/drivermanual-2-small.pdf"
|
60 |
#loader=read_file_get_prompts(file_name)
|
61 |
+
#text=read_file_get_prompts(file_name)
|
62 |
+
text = extract_text_from_pdf(file_name)
|
63 |
#pdfReaded = PyPDF2.PdfReader(file_name)
|
64 |
#docs=loader.load()
|
|
|
65 |
#save_to_vector_store(text)
|
66 |
+
save_to_vector_store(text)
|
67 |
|
68 |
|