File size: 10,929 Bytes
ef5b171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d52ad8
ef5b171
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
import PyPDF2
from PyPDF2 import PdfReader
import pdfplumber
from PIL import Image
import pytesseract
from pdf2image import convert_from_path

from pdfminer.high_level import extract_pages, extract_text
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure

import os
from dotenv import load_dotenv

load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')

# Extracting tables from the page
def extract_table(pdf_path, page_num, table_num):
    # Open the pdf file
    pdf = pdfplumber.open(pdf_path)
    # Find the examined page
    table_page = pdf.pages[page_num]
    # Extract the appropriate table
    table = table_page.extract_tables()[table_num]

    return table

# Convert table into appropriate fromat
def table_converter(table):
    table_string = ''
    # Iterate through each row of the table
    for row_num in range(len(table)):
        row = table[row_num]
        # Remove the line breaker from the wrapted texts
        cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row]
        # Convert the table into a string
        table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n')
    # Removing the last line break
    table_string = table_string[:-1]
    return table_string


# Create a function to check if the element is in any tables present in the page
def is_element_inside_any_table(element, page ,tables):
    x0, y0up, x1, y1up = element.bbox
    # Change the cordinates because the pdfminer counts from the botton to top of the page
    y0 = page.bbox[3] - y1up
    y1 = page.bbox[3] - y0up
    for table in tables:
        tx0, ty0, tx1, ty1 = table.bbox
        if tx0 <= x0 <= x1 <= tx1 and ty0 <= y0 <= y1 <= ty1:
            return True
    return False

# Function to find the table for a given element
def find_table_for_element(element, page ,tables):
    x0, y0up, x1, y1up = element.bbox
    # Change the cordinates because the pdfminer counts from the botton to top of the page
    y0 = page.bbox[3] - y1up
    y1 = page.bbox[3] - y0up
    for i, table in enumerate(tables):
        tx0, ty0, tx1, ty1 = table.bbox
        if tx0 <= x0 <= x1 <= tx1 and ty0 <= y0 <= y1 <= ty1:
            return i  # Return the index of the table
    return None


def text_extraction(element):
    # Extracting the text from the in line text element
    line_text = element.get_text()

    # Find the formats of the text
    # Initialize the list with all the formats appeared in the line of text
    line_formats = []
    for text_line in element:
        if isinstance(text_line, LTTextContainer):
            # Iterating through each character in the line of text
            for character in text_line:
                if isinstance(character, LTChar):
                    # Append the font name of the character
                    #line_formats.append(character.fontname)
                    # Append the font size of the character
                    #line_formats.append(character.size)
                    line_formats.append("")

    # Find the unique font sizes and names in the line
    format_per_line = list(set(line_formats))

    # Return a tuple with the text in each line along with its format
    return (line_text, format_per_line)


# Create a function to crop the image elements from PDFs
def crop_image(element, pageObj):
    # Get the coordinates to crop the image from PDF
    [image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1]
    # Crop the page using coordinates (left, bottom, right, top)
    pageObj.mediabox.lower_left = (image_left, image_bottom)
    pageObj.mediabox.upper_right = (image_right, image_top)
    # Save the cropped page to a new PDF
    cropped_pdf_writer = PyPDF2.PdfWriter()
    cropped_pdf_writer.add_page(pageObj)
    # Save the cropped PDF to a new file
    with open('cropped_image.pdf', 'wb') as cropped_pdf_file:
        cropped_pdf_writer.write(cropped_pdf_file)

# Create a function to convert the PDF to images
def convert_to_images(input_file,):
    images = convert_from_path(input_file)
    image = images[0]
    output_file = 'PDF_image.png'
    image.save(output_file, 'PNG')

# Create a function to read text from images
def image_to_text(image_path):
    # Read the image
    img = Image.open(image_path)
    # Extract the text from the image
    text = pytesseract.image_to_string(img)
    return text



def read_file_get_prompts(file_name):
    if file_name is not None:

        # Find the PDF path
        pdf_path = file_name # '/content/data/'+file_name+".pdf"
        pdfReaded = PyPDF2.PdfReader(file_name)

        # Create the dictionary to extract text from each image
        text_per_page = {}
        # Create a boolean variable for image detection
        image_flag = False

        number_of_pages = len(list(extract_pages(file_name)))
        result = ''

        # We extract the pages from the PDF
        for pagenum, page in enumerate(extract_pages(file_name)):

            # Initialize the variables needed for the text extraction from the page
            pageObj = pdfReaded.pages[pagenum]
            page_text = []
            line_format = []
            text_from_images = []
            text_from_tables = []
            page_content = []
            # Initialize the number of the examined tables
            table_in_page= -1
            # Open the pdf file
            pdf = pdfplumber.open(pdf_path)
            # Find the examined page
            page_tables = pdf.pages[pagenum]
            # Find the number of tables in the page
            tables = page_tables.find_tables()
            if len(tables)!=0:
                table_in_page = 0

            # Extracting the tables of the page
            for table_num in range(len(tables)):
                # Extract the information of the table
                table = extract_table(pdf_path, pagenum, table_num)
                # Convert the table information in structured string format
                table_string = table_converter(table)
                # Append the table string into a list
                text_from_tables.append(table_string)

            # Find all the elements
            page_elements = [(element.y1, element) for element in page._objs]
            # Sort all the element as they appear in the page
            page_elements.sort(key=lambda a: a[0], reverse=True)


            # Find the elements that composed a page
            for i,component in enumerate(page_elements):
                # Extract the element of the page layout
                element = component[1]

                # Check the elements for tables
                if table_in_page == -1:
                    pass
                else:
                    if is_element_inside_any_table(element, page ,tables):
                        table_found = find_table_for_element(element,page ,tables)
                        if table_found == table_in_page and table_found != None:
                            page_content.append(text_from_tables[table_in_page])
                            #page_text.append('table')
                            #line_format.append('table')
                            table_in_page+=1
                        # Pass this iteration because the content of this element was extracted from the tables
                        continue

                if not is_element_inside_any_table(element,page,tables):

                    # Check if the element is text element
                    if isinstance(element, LTTextContainer):
                        # Use the function to extract the text and format for each text element
                        (line_text, format_per_line) = text_extraction(element)
                        # Append the text of each line to the page text
                        page_text.append(line_text)
                        # Append the format for each line containing text
                        line_format.append(format_per_line)
                        page_content.append(line_text)


                    # Check the elements for images
                    if isinstance(element, LTFigure):
                        # Crop the image from PDF
                        crop_image(element, pageObj)
                        # Convert the croped pdf to image
                        convert_to_images('cropped_image.pdf')
                        # Extract the text from image
                        image_text = image_to_text('PDF_image.png')
                        image_text = "" # removed to remove the errors with image
                        text_from_images.append(image_text)
                        page_content.append(image_text)
                        # Add a placeholder in the text and format lists
                        #page_text.append('image')
                        #line_format.append('image')
                        # Update the flag for image detection
                        image_flag = True


            # Create the key of the dictionary
            dctkey = 'Page_'+str(pagenum)
            print(dctkey)

            # Add the list of list as value of the page key
            #text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
            text_per_page[dctkey]= [page_text, text_from_images,text_from_tables, page_content]
            #result = result.join(page_text).join(line_format).join(text_from_images).join(text_from_tables).join(page_content)
        result = " "
        for t in range(number_of_pages):
            page = 'Page_'+str(t)
            #result = result.join(map(str, text_per_page[page]))
            for q in range(len(text_per_page[page])):
                #print(f"{''.join(map(str, text_per_page[page][q]))}")
                result = result + f"{''.join(map(str, text_per_page[page][q]))}"

    return result

    return True

def save_to_vector_store(text):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    docs = text_splitter.create_documents(text)
    vectorstore = FAISS.from_documents(documents=docs, embedding=OpenAIEmbeddings(api_key=OPENAI_API_KEY))
    vectorstore.save_local(DB_FAISS_PATH, index_name="njmvc_Index")
#create a new file named vectorstore in your current directory.
if __name__=="__main__":
        DB_FAISS_PATH = 'vectorstore/db_faiss'
        file_name = "./data/drivermanual-2-small.pdf"
        #loader=read_file_get_prompts(file_name)
        text=read_file_get_prompts(file_name)
        #pdfReaded = PyPDF2.PdfReader(file_name)
        #docs=loader.load()
        save_to_vector_store(text)
        #save_to_vector_store(text)