File size: 32,297 Bytes
477b130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
{
"cells": [
{
"cell_type": "markdown",
"id": "53e9feaa-53de-4377-8d45-aa1f7264ae3a",
"metadata": {},
"source": [
"### First Neccesary libararies needs to be loaded."
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "8864f53f-15d2-403c-a905-3da509cfb050",
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr\n",
"import transformers\n",
"from transformers import pipeline\n",
"import tf_keras as keras\n",
"import pandas as pd\n",
"import os"
]
},
{
"cell_type": "markdown",
"id": "5bb130f0-d8c8-459d-918f-84025c93bc05",
"metadata": {},
"source": [
"### Now we import our already pre-trained model from "
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "1c4e29a8-9b24-47d6-b14b-0e2a7e4d66a1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFBertForSequenceClassification: ['bert.embeddings.position_ids']\n",
"- This IS expected if you are initializing TFBertForSequenceClassification from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing TFBertForSequenceClassification from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).\n",
"All the weights of TFBertForSequenceClassification were initialized from the PyTorch model.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFBertForSequenceClassification for predictions without further training.\n",
"Device set to use 0\n"
]
}
],
"source": [
"# Load pre-trained spam classifier\n",
"spam_classifier = pipeline(\n",
" \"text-classification\",\n",
" model=\"mrm8488/bert-tiny-finetuned-sms-spam-detection\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8b27be80-1a6c-4c6c-a3ac-fe3b6f1378ae",
"metadata": {},
"outputs": [],
"source": [
"import tempfile"
]
},
{
"cell_type": "markdown",
"id": "9cb4ab66-2833-40bd-87cb-4d712398e431",
"metadata": {},
"source": [
"### Since single email check is hassle we will make a function for batch classication\n",
"### we should assume certain file template or format so our program knows what to expect"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "215fd411-623f-43ce-8775-1bbd2c130b56",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [],
"source": [
"def classify_batch(file):\n",
" \"\"\"Process uploaded CSV/TXT file with multiple emails\"\"\"\n",
" results = []\n",
" if file.name.endswith('.csv'): # Handling the emails in CSV files format\n",
" df = pd.read_csv(file)\n",
" emails = df['email'].tolist() # we assume there's a column named 'email'\n",
" for idx, email in enumerate(emails):\n",
" prediction = spam_classifier(email)[0]\n",
" results.append({\n",
" \"email\": email[:50] + \"...\", # Truncate for display\n",
" \"label\": \"SPAM\" if prediction[\"label\"] == \"LABEL_1\" else \"HAM\",\n",
" \"confidence\": prediction[\"score\"]\n",
" })\n",
"\n",
" ### Now we almost do the same thing but for text files (one email per line)\n",
" elif file.name.endswith('.txt'):\n",
" with open(file.name, 'r') as f:\n",
" emails = f.readlines()\n",
" for email in emails:\n",
" prediction = spam_classifier(email.strip())[0]\n",
" results.append({\n",
" \"email\": email.strip()[:50] + \"...\",\n",
" \"label\": \"SPAM\" if prediction[\"label\"] == \"LABEL_1\" else \"HAM\",\n",
" \"confidence\": f\"{prediction['score']:.4f}\"\n",
" })\n",
" ### --------------- Here we implemnt some condition for our uploaded files __________\n",
" try:\n",
" results = []\n",
" if not file.name:\n",
" raise gr.Error(\"No file uploaded\")\n",
" # Handle CSV files\n",
" if file.name.endswith('.csv'):\n",
" df = pd.read_csv(file)\n",
" if 'email' not in df.columns:\n",
" raise gr.Error(\"CSV file must contain 'email' column\")\n",
" emails = df['email'].tolist()\n",
" \n",
" # Handle text files\n",
" elif file.name.endswith('.txt'):\n",
" with open(file.name, 'r') as f:\n",
" emails = f.readlines()\n",
" else:\n",
" raise gr.Error(\"Unsupported file format. Only CSV/TXT accepted\")\n",
" \n",
" # Limit to 100 emails max for demo\n",
" emails = emails[:100]\n",
"\n",
"\n",
" except gr.Error as e:\n",
" raise e # Re-raise Gradio errors to show pop-up\n",
" except Exception as e:\n",
" raise gr.Error(f\"An unexpected error occurred: {str(e)}\")\n",
"\n",
"\n",
" return pd.DataFrame(results)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "b8ae7b3b-5273-4242-85db-b5cb622a4046",
"metadata": {},
"outputs": [],
"source": [
"def classify_batch(file):\n",
" \"\"\"Process uploaded CSV/TXT file with multiple emails\"\"\"\n",
" try:\n",
" results = []\n",
" \n",
" # Check if file exists\n",
" if not file.name:\n",
" raise gr.Error(\"No file uploaded\")\n",
"\n",
" # --- CSV File Handling ---\n",
" if file.name.endswith('.csv'):\n",
" df = pd.read_csv(file)\n",
" \n",
" # Check for required email column\n",
" if 'email' not in df.columns:\n",
" raise gr.Error(\"CSV file must contain a column named 'email'\")\n",
" \n",
" emails = df['email'].tolist()\n",
"\n",
" # --- Text File Handling ---\n",
" elif file.name.endswith('.txt'):\n",
" with open(file.name, 'r') as f:\n",
" emails = f.readlines()\n",
" \n",
" # --- Unsupported Format ---\n",
" else:\n",
" raise gr.Error(\"Unsupported file format. Only CSV/TXT accepted\")\n",
"\n",
" # Process emails (common for both formats)\n",
" emails = emails[:100] # Limit to 100 emails\n",
" for email in emails:\n",
" # Handle empty lines in text files\n",
" if not email.strip():\n",
" continue\n",
" \n",
" prediction = spam_classifier(email.strip())[0]\n",
" results.append({\n",
" \"email\": email.strip()[:50] + \"...\",\n",
" \"label\": \"SPAM\" if prediction[\"label\"] == \"LABEL_1\" else \"HAM\",\n",
" \"confidence\": f\"{prediction['score']:.4f}\"\n",
" })\n",
"\n",
" return pd.DataFrame(results)\n",
"\n",
" except gr.Error as e:\n",
" raise e # Show pop-up for expected errors\n",
" except Exception as e:\n",
" raise gr.Error(f\"Processing error: {str(e)}\")"
]
},
{
"cell_type": "markdown",
"id": "6ccb5108-a5d4-4f61-b363-dc4c9d25b4fb",
"metadata": {},
"source": [
"### We define simple function for classification"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "1336344b-54c3-431d-8d89-c351b0c24f80",
"metadata": {},
"outputs": [],
"source": [
"def classify_text(text):\n",
" result = spam_classifier(text)[0]\n",
" return {\n",
" \"Spam\": result[\"score\"] if result[\"label\"] == \"LABEL_1\" else 1 - result[\"score\"],\n",
" \"Ham\": result[\"score\"] if result[\"label\"] == \"LABEL_0\" else 1 - result[\"score\"]\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "c428e83a-dbe6-4c91-8a05-5b550652c181",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7867\n",
"Caching examples at: '/Users/techgarage/Projects/spamedar/.gradio/cached_examples/318'\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"with gr.Blocks(title=\"Spam Classifier Pro\") as demo:\n",
" gr.Markdown(\"# π§ Spam Classification System\")\n",
" \n",
" with gr.Tab(\"Single Email\"):\n",
" gr.Interface(\n",
" fn=classify_text,\n",
" inputs=gr.Textbox(label=\"Input Email\", lines=3),\n",
" outputs=gr.Label(label=\"Classification\"),\n",
" examples=[\n",
" [\"Urgent: Verify your account details now!\"],\n",
" [\"Meeting rescheduled to Friday 2 PM\"]\n",
" ]\n",
" )\n",
" current_dir = os.getcwd()\n",
" with gr.Tab(\"Batch Processing\"):\n",
" gr.Markdown(\"## Upload email batch (CSV or TXT)\")\n",
" file_input = gr.File(label=\"Upload File\", file_types=[\".csv\", \".txt\"])\n",
" clear_btn = gr.Button(\"Clear Selection\", variant=\"secondary\")\n",
" output_table = gr.Dataframe(\n",
" headers=[\"email\", \"label\", \"confidence\"],\n",
" datatype=[\"str\", \"str\", \"number\"],\n",
" interactive=False,\n",
" label=\"Classification Results\"\n",
" )\n",
" download_btn = gr.DownloadButton(label=\"Download Results\")\n",
" \n",
" def process_file(file):\n",
" \"\"\"Process file and return (display_df, download_path)\"\"\"\n",
" try:\n",
" if file is None:\n",
" return pd.DataFrame(), None\n",
" \n",
" results_df = classify_batch(file)\n",
" with tempfile.NamedTemporaryFile(suffix=\".csv\", delete=False) as f:\n",
" results_df.to_csv(f.name, index=False)\n",
" return results_df, f.name\n",
" except Exception as e:\n",
" raise gr.Error(f\"Error processing file: {str(e)}\")\n",
"\n",
" def clear_selection():\n",
" \"\"\"Clear file input and results\"\"\"\n",
" return None, pd.DataFrame(), None\n",
" \n",
" file_input.upload(\n",
" fn=process_file,\n",
" inputs=file_input,\n",
" outputs=[output_table, download_btn]\n",
" )\n",
"\n",
" clear_btn.click(\n",
" fn=clear_selection,\n",
" outputs=[file_input, output_table, download_btn]\n",
" )\n",
" \n",
" example_files = [\n",
" os.path.join(os.getcwd(), \"sample_emails.csv\"),\n",
" os.path.join(os.getcwd(), \"batch_emails.txt\")\n",
" ]\n",
" if all(os.path.exists(f) for f in example_files):\n",
" gr.Examples(\n",
" examples=[[f] for f in example_files],\n",
" inputs=file_input,\n",
" outputs=[output_table, download_btn],\n",
" fn=process_file,\n",
" cache_examples=True,\n",
" label=\"Click any example below to test:\"\n",
" )\n",
"\n",
" else:\n",
" print(\"Warning: Example files missing. Place these in your project root:\")\n",
" print(\"- sample_emails.csv\")\n",
" print(\"- batch_emails.txt\")\n",
"\n",
"if __name__ == \"__main__\":\n",
" demo.launch()"
]
},
{
"cell_type": "markdown",
"id": "4559470b-1356-4f9d-b977-44bfbe117f3d",
"metadata": {},
"source": [
"### using gradio we will make a simple interface for our program"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "dfa7f58b-0ab8-445e-bfab-1396f2443033",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 17,
"id": "67927628-4ca2-43ac-80c3-a1f9d4771d5d",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7863\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"with gr.Blocks(title=\"Spam Classifier Pro\") as demo:\n",
" gr.Markdown(\"# π§ Welcome to Spamedar!\")\n",
" \n",
" \n",
" with gr.Tab(\"βοΈ Single Email\"):\n",
" gr.Interface(\n",
" fn=classify_text,\n",
" inputs=gr.Textbox(label=\"Input Email\", lines=3),\n",
" outputs=gr.Label(label=\"Classification\"),\n",
" examples=[\n",
" [\"Urgent: Verify your account details now!\"],\n",
" [\"Hey, can we meet tomorrow to discuss the project?\"],\n",
" [\"WINNER! You've been selected for a $1000 Walmart Gift Card!\"],\n",
" [\"Your account needs verification. Click here to confirm your details.\"],\n",
" [\"Meeting rescheduled to Friday 2 PM\"]\n",
" ]\n",
" )\n",
" \n",
" with gr.Tab(\"π¨ Multiple Emails\"):\n",
" gr.Markdown(\"## Upload email batch (CSV or TXT)\")\n",
" file_input = gr.File(label=\"Upload File\", file_types=[\".csv\", \".txt\"])\n",
" output_table = gr.Dataframe(\n",
" headers=[\"email\", \"label\", \"confidence\"],\n",
" datatype=[\"str\", \"str\", \"number\"],\n",
" interactive=False,\n",
" label=\"Classification Results\"\n",
" )\n",
" download_btn = gr.DownloadButton(label=\"Download Results\")\n",
"\n",
" def process_file(file):\n",
" \"\"\"Process file and return (display_df, download_path)\"\"\"\n",
" results_df = classify_batch(file)\n",
" \n",
" with tempfile.NamedTemporaryFile(suffix=\".csv\", delete=False) as f:\n",
" results_df.to_csv(f.name, index=False)\n",
" return results_df, f.name\n",
" \n",
" file_input.upload(\n",
" fn=process_file,\n",
" inputs=file_input,\n",
" outputs=[output_table, download_btn] # Update both components\n",
" )\n",
" \n",
" gr.Examples(\n",
" examples=[\n",
" [\"sample_emails.csv\"],\n",
" [\"batch_emails.txt\"]\n",
" ],\n",
" inputs=file_input\n",
" )\n",
"if __name__ == \"__main__\":\n",
" demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "188e3c31-38ef-4191-8b24-5487724466bd",
"metadata": {
"collapsed": true,
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
}
},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "[Errno 2] No such file or directory: 'sample_emails.csv'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[17], line 31\u001b[0m\n\u001b[1;32m 23\u001b[0m download_btn \u001b[38;5;241m=\u001b[39m gr\u001b[38;5;241m.\u001b[39mFile(label\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDownload Results\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 25\u001b[0m file_input\u001b[38;5;241m.\u001b[39mupload(\n\u001b[1;32m 26\u001b[0m fn\u001b[38;5;241m=\u001b[39mclassify_batch,\n\u001b[1;32m 27\u001b[0m inputs\u001b[38;5;241m=\u001b[39mfile_input,\n\u001b[1;32m 28\u001b[0m outputs\u001b[38;5;241m=\u001b[39moutput_table\n\u001b[1;32m 29\u001b[0m )\n\u001b[0;32m---> 31\u001b[0m \u001b[43mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mExamples\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 32\u001b[0m \u001b[43m \u001b[49m\u001b[43mexamples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[1;32m 33\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msample_emails.csv\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 34\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbatch_emails.txt\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[1;32m 35\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 36\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfile_input\u001b[49m\n\u001b[1;32m 37\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;18m__name__\u001b[39m \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__main__\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 40\u001b[0m demo\u001b[38;5;241m.\u001b[39mlaunch()\n",
"File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/site-packages/gradio/helpers.py:57\u001b[0m, in \u001b[0;36mcreate_examples\u001b[0;34m(examples, inputs, outputs, fn, cache_examples, cache_mode, examples_per_page, _api_mode, label, elem_id, run_on_click, preprocess, postprocess, api_name, batch, example_labels, visible)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mcreate_examples\u001b[39m(\n\u001b[1;32m 37\u001b[0m examples: \u001b[38;5;28mlist\u001b[39m[Any] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mlist\u001b[39m[\u001b[38;5;28mlist\u001b[39m[Any]] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mstr\u001b[39m,\n\u001b[1;32m 38\u001b[0m inputs: Component \u001b[38;5;241m|\u001b[39m Sequence[Component],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 54\u001b[0m visible: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 55\u001b[0m ):\n\u001b[1;32m 56\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component.\"\"\"\u001b[39;00m\n\u001b[0;32m---> 57\u001b[0m examples_obj \u001b[38;5;241m=\u001b[39m \u001b[43mExamples\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mexamples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexamples\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 59\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 60\u001b[0m \u001b[43m \u001b[49m\u001b[43moutputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 61\u001b[0m \u001b[43m \u001b[49m\u001b[43mfn\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 62\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_examples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_examples\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 63\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 64\u001b[0m \u001b[43m \u001b[49m\u001b[43mexamples_per_page\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexamples_per_page\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 65\u001b[0m \u001b[43m \u001b[49m\u001b[43m_api_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_api_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 66\u001b[0m \u001b[43m \u001b[49m\u001b[43mlabel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlabel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 67\u001b[0m \u001b[43m \u001b[49m\u001b[43melem_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43melem_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 68\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_on_click\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_on_click\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 69\u001b[0m \u001b[43m \u001b[49m\u001b[43mpreprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpreprocess\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 70\u001b[0m \u001b[43m \u001b[49m\u001b[43mpostprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpostprocess\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 71\u001b[0m \u001b[43m \u001b[49m\u001b[43mapi_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mapi_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 72\u001b[0m \u001b[43m \u001b[49m\u001b[43mbatch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbatch\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 73\u001b[0m \u001b[43m \u001b[49m\u001b[43mexample_labels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexample_labels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 74\u001b[0m \u001b[43m \u001b[49m\u001b[43mvisible\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvisible\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 75\u001b[0m \u001b[43m \u001b[49m\u001b[43m_initiated_directly\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 76\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 77\u001b[0m examples_obj\u001b[38;5;241m.\u001b[39mcreate()\n\u001b[1;32m 78\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m examples_obj\n",
"File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/site-packages/gradio/helpers.py:294\u001b[0m, in \u001b[0;36mExamples.__init__\u001b[0;34m(self, examples, inputs, outputs, fn, cache_examples, cache_mode, examples_per_page, _api_mode, label, elem_id, run_on_click, preprocess, postprocess, api_name, batch, example_labels, visible, _initiated_directly)\u001b[0m\n\u001b[1;32m 291\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset\u001b[38;5;241m.\u001b[39msamples:\n\u001b[1;32m 292\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m index, example \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnon_none_examples):\n\u001b[1;32m 293\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnon_none_processed_examples[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset\u001b[38;5;241m.\u001b[39msamples[index]] \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 294\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_processed_example\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexample\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 295\u001b[0m )\n\u001b[1;32m 297\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcache_examples \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlazy\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 298\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 299\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWill cache examples in \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mutils\u001b[38;5;241m.\u001b[39mabspath(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcached_folder)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m directory at first use.\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 300\u001b[0m end\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 301\u001b[0m )\n",
"File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/site-packages/gradio/helpers.py:328\u001b[0m, in \u001b[0;36mExamples._get_processed_example\u001b[0;34m(self, example)\u001b[0m\n\u001b[1;32m 324\u001b[0m sub \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 325\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m component, sample \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minputs_with_examples, example, strict\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 327\u001b[0m ):\n\u001b[0;32m--> 328\u001b[0m prediction_value \u001b[38;5;241m=\u001b[39m \u001b[43mcomponent\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpostprocess\u001b[49m\u001b[43m(\u001b[49m\u001b[43msample\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 329\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(prediction_value, (GradioRootModel, GradioModel)):\n\u001b[1;32m 330\u001b[0m prediction_value \u001b[38;5;241m=\u001b[39m prediction_value\u001b[38;5;241m.\u001b[39mmodel_dump()\n",
"File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/site-packages/gradio/components/file.py:223\u001b[0m, in \u001b[0;36mFile.postprocess\u001b[0;34m(self, value)\u001b[0m\n\u001b[1;32m 209\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ListFiles(\n\u001b[1;32m 210\u001b[0m root\u001b[38;5;241m=\u001b[39m[\n\u001b[1;32m 211\u001b[0m FileData(\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 217\u001b[0m ]\n\u001b[1;32m 218\u001b[0m )\n\u001b[1;32m 219\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 220\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m FileData(\n\u001b[1;32m 221\u001b[0m path\u001b[38;5;241m=\u001b[39mvalue,\n\u001b[1;32m 222\u001b[0m orig_name\u001b[38;5;241m=\u001b[39mPath(value)\u001b[38;5;241m.\u001b[39mname,\n\u001b[0;32m--> 223\u001b[0m size\u001b[38;5;241m=\u001b[39m\u001b[43mPath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mst_size,\n\u001b[1;32m 224\u001b[0m )\n",
"File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/pathlib.py:1097\u001b[0m, in \u001b[0;36mPath.stat\u001b[0;34m(self, follow_symlinks)\u001b[0m\n\u001b[1;32m 1092\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mstat\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m, follow_symlinks\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[1;32m 1093\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1094\u001b[0m \u001b[38;5;124;03m Return the result of the stat() system call on this path, like\u001b[39;00m\n\u001b[1;32m 1095\u001b[0m \u001b[38;5;124;03m os.stat() does.\u001b[39;00m\n\u001b[1;32m 1096\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1097\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_accessor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfollow_symlinks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_symlinks\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'sample_emails.csv'"
]
}
],
"source": [
"demo = gr.Interface(\n",
" fn=classify_text,\n",
" inputs=gr.Textbox(label=\"Email/Message\", placeholder=\"Enter text here...\"),\n",
" outputs=gr.Label(label=\"Classification Results\"),\n",
" title=\"Spamedar\",\n",
" description=\"Copy your email to find out if it's a is Spam or Ham.π\",\n",
" examples=[\n",
" [\"Hey, can we meet tomorrow to discuss the project?\"],\n",
" [\"WINNER! You've been selected for a $1000 Walmart Gift Card!\"],\n",
" [\"Your account needs verification. Click here to confirm your details.\"]\n",
" ]\n",
")\n",
"\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "73be7578-bc18-4af7-8a00-52b6ee4b21e9",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|