File size: 32,297 Bytes
477b130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "53e9feaa-53de-4377-8d45-aa1f7264ae3a",
   "metadata": {},
   "source": [
    "### First Neccesary libararies needs to be loaded."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "8864f53f-15d2-403c-a905-3da509cfb050",
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "import transformers\n",
    "from transformers import pipeline\n",
    "import tf_keras as keras\n",
    "import pandas as pd\n",
    "import os"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5bb130f0-d8c8-459d-918f-84025c93bc05",
   "metadata": {},
   "source": [
    "### Now we import our already pre-trained model from "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "1c4e29a8-9b24-47d6-b14b-0e2a7e4d66a1",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFBertForSequenceClassification: ['bert.embeddings.position_ids']\n",
      "- This IS expected if you are initializing TFBertForSequenceClassification from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing TFBertForSequenceClassification from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).\n",
      "All the weights of TFBertForSequenceClassification were initialized from the PyTorch model.\n",
      "If your task is similar to the task the model of the checkpoint was trained on, you can already use TFBertForSequenceClassification for predictions without further training.\n",
      "Device set to use 0\n"
     ]
    }
   ],
   "source": [
    "# Load pre-trained spam classifier\n",
    "spam_classifier = pipeline(\n",
    "    \"text-classification\",\n",
    "    model=\"mrm8488/bert-tiny-finetuned-sms-spam-detection\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "8b27be80-1a6c-4c6c-a3ac-fe3b6f1378ae",
   "metadata": {},
   "outputs": [],
   "source": [
    "import tempfile"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9cb4ab66-2833-40bd-87cb-4d712398e431",
   "metadata": {},
   "source": [
    "### Since single email check is hassle we will make a function for batch classication\n",
    "### we should assume certain file template or format so our program knows what to expect"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "215fd411-623f-43ce-8775-1bbd2c130b56",
   "metadata": {
    "jupyter": {
     "source_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "def classify_batch(file):\n",
    "    \"\"\"Process uploaded CSV/TXT file with multiple emails\"\"\"\n",
    "    results = []\n",
    "    if file.name.endswith('.csv'):    # Handling the emails in CSV files format\n",
    "        df = pd.read_csv(file)\n",
    "        emails = df['email'].tolist()  # we assume there's a column named 'email'\n",
    "        for idx, email in enumerate(emails):\n",
    "            prediction = spam_classifier(email)[0]\n",
    "            results.append({\n",
    "                \"email\": email[:50] + \"...\",  # Truncate for display\n",
    "                \"label\": \"SPAM\" if prediction[\"label\"] == \"LABEL_1\" else \"HAM\",\n",
    "                \"confidence\": prediction[\"score\"]\n",
    "            })\n",
    "\n",
    "    ### Now we almost do the same thing but for text files (one email per line)\n",
    "    elif file.name.endswith('.txt'):\n",
    "        with open(file.name, 'r') as f:\n",
    "            emails = f.readlines()\n",
    "            for email in emails:\n",
    "                prediction = spam_classifier(email.strip())[0]\n",
    "                results.append({\n",
    "                    \"email\": email.strip()[:50] + \"...\",\n",
    "                    \"label\": \"SPAM\" if prediction[\"label\"] == \"LABEL_1\" else \"HAM\",\n",
    "                    \"confidence\": f\"{prediction['score']:.4f}\"\n",
    "                })\n",
    "        ### --------------- Here we implemnt some condition for our uploaded files __________\n",
    "        try:\n",
    "            results = []\n",
    "            if not file.name:\n",
    "                raise gr.Error(\"No file uploaded\")\n",
    "                # Handle CSV files\n",
    "            if file.name.endswith('.csv'):\n",
    "                df = pd.read_csv(file)\n",
    "                if 'email' not in df.columns:\n",
    "                    raise gr.Error(\"CSV file must contain 'email' column\")\n",
    "                emails = df['email'].tolist()\n",
    "            \n",
    "        # Handle text files\n",
    "            elif file.name.endswith('.txt'):\n",
    "                with open(file.name, 'r') as f:\n",
    "                    emails = f.readlines()\n",
    "            else:\n",
    "                raise gr.Error(\"Unsupported file format. Only CSV/TXT accepted\")\n",
    "                \n",
    "            # Limit to 100 emails max for demo\n",
    "            emails = emails[:100]\n",
    "\n",
    "\n",
    "        except gr.Error as e:\n",
    "            raise e  # Re-raise Gradio errors to show pop-up\n",
    "        except Exception as e:\n",
    "            raise gr.Error(f\"An unexpected error occurred: {str(e)}\")\n",
    "\n",
    "\n",
    "    return pd.DataFrame(results)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "b8ae7b3b-5273-4242-85db-b5cb622a4046",
   "metadata": {},
   "outputs": [],
   "source": [
    "def classify_batch(file):\n",
    "    \"\"\"Process uploaded CSV/TXT file with multiple emails\"\"\"\n",
    "    try:\n",
    "        results = []\n",
    "        \n",
    "        # Check if file exists\n",
    "        if not file.name:\n",
    "            raise gr.Error(\"No file uploaded\")\n",
    "\n",
    "        # --- CSV File Handling ---\n",
    "        if file.name.endswith('.csv'):\n",
    "            df = pd.read_csv(file)\n",
    "            \n",
    "            # Check for required email column\n",
    "            if 'email' not in df.columns:\n",
    "                raise gr.Error(\"CSV file must contain a column named 'email'\")\n",
    "                \n",
    "            emails = df['email'].tolist()\n",
    "\n",
    "        # --- Text File Handling ---\n",
    "        elif file.name.endswith('.txt'):\n",
    "            with open(file.name, 'r') as f:\n",
    "                emails = f.readlines()\n",
    "        \n",
    "        # --- Unsupported Format ---\n",
    "        else:\n",
    "            raise gr.Error(\"Unsupported file format. Only CSV/TXT accepted\")\n",
    "\n",
    "        # Process emails (common for both formats)\n",
    "        emails = emails[:100]  # Limit to 100 emails\n",
    "        for email in emails:\n",
    "            # Handle empty lines in text files\n",
    "            if not email.strip():\n",
    "                continue\n",
    "                \n",
    "            prediction = spam_classifier(email.strip())[0]\n",
    "            results.append({\n",
    "                \"email\": email.strip()[:50] + \"...\",\n",
    "                \"label\": \"SPAM\" if prediction[\"label\"] == \"LABEL_1\" else \"HAM\",\n",
    "                \"confidence\": f\"{prediction['score']:.4f}\"\n",
    "            })\n",
    "\n",
    "        return pd.DataFrame(results)\n",
    "\n",
    "    except gr.Error as e:\n",
    "        raise e  # Show pop-up for expected errors\n",
    "    except Exception as e:\n",
    "        raise gr.Error(f\"Processing error: {str(e)}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6ccb5108-a5d4-4f61-b363-dc4c9d25b4fb",
   "metadata": {},
   "source": [
    "### We define simple function for classification"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "1336344b-54c3-431d-8d89-c351b0c24f80",
   "metadata": {},
   "outputs": [],
   "source": [
    "def classify_text(text):\n",
    "    result = spam_classifier(text)[0]\n",
    "    return {\n",
    "        \"Spam\": result[\"score\"] if result[\"label\"] == \"LABEL_1\" else 1 - result[\"score\"],\n",
    "        \"Ham\": result[\"score\"] if result[\"label\"] == \"LABEL_0\" else 1 - result[\"score\"]\n",
    "    }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "c428e83a-dbe6-4c91-8a05-5b550652c181",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
      "To disable this warning, you can either:\n",
      "\t- Avoid using `tokenizers` before the fork if possible\n",
      "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7867\n",
      "Caching examples at: '/Users/techgarage/Projects/spamedar/.gradio/cached_examples/318'\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "with gr.Blocks(title=\"Spam Classifier Pro\") as demo:\n",
    "    gr.Markdown(\"# πŸ“§ Spam Classification System\")\n",
    "    \n",
    "    with gr.Tab(\"Single Email\"):\n",
    "        gr.Interface(\n",
    "            fn=classify_text,\n",
    "            inputs=gr.Textbox(label=\"Input Email\", lines=3),\n",
    "            outputs=gr.Label(label=\"Classification\"),\n",
    "            examples=[\n",
    "                [\"Urgent: Verify your account details now!\"],\n",
    "                [\"Meeting rescheduled to Friday 2 PM\"]\n",
    "            ]\n",
    "        )\n",
    "    current_dir = os.getcwd()\n",
    "    with gr.Tab(\"Batch Processing\"):\n",
    "        gr.Markdown(\"## Upload email batch (CSV or TXT)\")\n",
    "        file_input = gr.File(label=\"Upload File\", file_types=[\".csv\", \".txt\"])\n",
    "        clear_btn = gr.Button(\"Clear Selection\", variant=\"secondary\")\n",
    "        output_table = gr.Dataframe(\n",
    "            headers=[\"email\", \"label\", \"confidence\"],\n",
    "            datatype=[\"str\", \"str\", \"number\"],\n",
    "            interactive=False,\n",
    "            label=\"Classification Results\"\n",
    "        )\n",
    "        download_btn = gr.DownloadButton(label=\"Download Results\")\n",
    "        \n",
    "        def process_file(file):\n",
    "            \"\"\"Process file and return (display_df, download_path)\"\"\"\n",
    "            try:\n",
    "                if file is None:\n",
    "                    return pd.DataFrame(), None\n",
    "                    \n",
    "                results_df = classify_batch(file)\n",
    "                with tempfile.NamedTemporaryFile(suffix=\".csv\", delete=False) as f:\n",
    "                    results_df.to_csv(f.name, index=False)\n",
    "                    return results_df, f.name\n",
    "            except Exception as e:\n",
    "                raise gr.Error(f\"Error processing file: {str(e)}\")\n",
    "\n",
    "        def clear_selection():\n",
    "            \"\"\"Clear file input and results\"\"\"\n",
    "            return None, pd.DataFrame(), None\n",
    "        \n",
    "        file_input.upload(\n",
    "            fn=process_file,\n",
    "            inputs=file_input,\n",
    "            outputs=[output_table, download_btn]\n",
    "        )\n",
    "\n",
    "        clear_btn.click(\n",
    "            fn=clear_selection,\n",
    "            outputs=[file_input, output_table, download_btn]\n",
    "        )\n",
    "        \n",
    "        example_files = [\n",
    "            os.path.join(os.getcwd(), \"sample_emails.csv\"),\n",
    "            os.path.join(os.getcwd(), \"batch_emails.txt\")\n",
    "        ]\n",
    "        if all(os.path.exists(f) for f in example_files):\n",
    "            gr.Examples(\n",
    "                examples=[[f] for f in example_files],\n",
    "                inputs=file_input,\n",
    "                outputs=[output_table, download_btn],\n",
    "                fn=process_file,\n",
    "                cache_examples=True,\n",
    "                label=\"Click any example below to test:\"\n",
    "            )\n",
    "\n",
    "        else:\n",
    "            print(\"Warning: Example files missing. Place these in your project root:\")\n",
    "            print(\"- sample_emails.csv\")\n",
    "            print(\"- batch_emails.txt\")\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    demo.launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4559470b-1356-4f9d-b977-44bfbe117f3d",
   "metadata": {},
   "source": [
    "### using gradio we will make a simple interface for our program"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "dfa7f58b-0ab8-445e-bfab-1396f2443033",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "67927628-4ca2-43ac-80c3-a1f9d4771d5d",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
      "To disable this warning, you can either:\n",
      "\t- Avoid using `tokenizers` before the fork if possible\n",
      "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7863\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "with gr.Blocks(title=\"Spam Classifier Pro\") as demo:\n",
    "    gr.Markdown(\"# πŸ“§ Welcome to Spamedar!\")\n",
    "    \n",
    "    \n",
    "    with gr.Tab(\"βœ‰οΈ Single Email\"):\n",
    "        gr.Interface(\n",
    "            fn=classify_text,\n",
    "            inputs=gr.Textbox(label=\"Input Email\", lines=3),\n",
    "            outputs=gr.Label(label=\"Classification\"),\n",
    "            examples=[\n",
    "                [\"Urgent: Verify your account details now!\"],\n",
    "                [\"Hey, can we meet tomorrow to discuss the project?\"],\n",
    "                [\"WINNER! You've been selected for a $1000 Walmart Gift Card!\"],\n",
    "                [\"Your account needs verification. Click here to confirm your details.\"],\n",
    "                [\"Meeting rescheduled to Friday 2 PM\"]\n",
    "            ]\n",
    "        )\n",
    "    \n",
    "    with gr.Tab(\"πŸ“¨ Multiple Emails\"):\n",
    "        gr.Markdown(\"## Upload email batch (CSV or TXT)\")\n",
    "        file_input = gr.File(label=\"Upload File\", file_types=[\".csv\", \".txt\"])\n",
    "        output_table = gr.Dataframe(\n",
    "            headers=[\"email\", \"label\", \"confidence\"],\n",
    "            datatype=[\"str\", \"str\", \"number\"],\n",
    "            interactive=False,\n",
    "            label=\"Classification Results\"\n",
    "        )\n",
    "        download_btn = gr.DownloadButton(label=\"Download Results\")\n",
    "\n",
    "        def process_file(file):\n",
    "            \"\"\"Process file and return (display_df, download_path)\"\"\"\n",
    "            results_df = classify_batch(file)\n",
    "            \n",
    "            with tempfile.NamedTemporaryFile(suffix=\".csv\", delete=False) as f:\n",
    "                results_df.to_csv(f.name, index=False)\n",
    "                return results_df, f.name\n",
    "        \n",
    "        file_input.upload(\n",
    "            fn=process_file,\n",
    "            inputs=file_input,\n",
    "            outputs=[output_table, download_btn]  # Update both components\n",
    "    )\n",
    "        \n",
    "        gr.Examples(\n",
    "            examples=[\n",
    "                [\"sample_emails.csv\"],\n",
    "                [\"batch_emails.txt\"]\n",
    "            ],\n",
    "            inputs=file_input\n",
    "        )\n",
    "if __name__ == \"__main__\":\n",
    "    demo.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "188e3c31-38ef-4191-8b24-5487724466bd",
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true,
     "source_hidden": true
    }
   },
   "outputs": [
    {
     "ename": "FileNotFoundError",
     "evalue": "[Errno 2] No such file or directory: 'sample_emails.csv'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[17], line 31\u001b[0m\n\u001b[1;32m     23\u001b[0m         download_btn \u001b[38;5;241m=\u001b[39m gr\u001b[38;5;241m.\u001b[39mFile(label\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDownload Results\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m     25\u001b[0m         file_input\u001b[38;5;241m.\u001b[39mupload(\n\u001b[1;32m     26\u001b[0m             fn\u001b[38;5;241m=\u001b[39mclassify_batch,\n\u001b[1;32m     27\u001b[0m             inputs\u001b[38;5;241m=\u001b[39mfile_input,\n\u001b[1;32m     28\u001b[0m             outputs\u001b[38;5;241m=\u001b[39moutput_table\n\u001b[1;32m     29\u001b[0m         )\n\u001b[0;32m---> 31\u001b[0m         \u001b[43mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mExamples\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m     32\u001b[0m \u001b[43m            \u001b[49m\u001b[43mexamples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[1;32m     33\u001b[0m \u001b[43m                \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msample_emails.csv\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     34\u001b[0m \u001b[43m                \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbatch_emails.txt\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[1;32m     35\u001b[0m \u001b[43m            \u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     36\u001b[0m \u001b[43m            \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfile_input\u001b[49m\n\u001b[1;32m     37\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     39\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;18m__name__\u001b[39m \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__main__\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m     40\u001b[0m     demo\u001b[38;5;241m.\u001b[39mlaunch()\n",
      "File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/site-packages/gradio/helpers.py:57\u001b[0m, in \u001b[0;36mcreate_examples\u001b[0;34m(examples, inputs, outputs, fn, cache_examples, cache_mode, examples_per_page, _api_mode, label, elem_id, run_on_click, preprocess, postprocess, api_name, batch, example_labels, visible)\u001b[0m\n\u001b[1;32m     36\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mcreate_examples\u001b[39m(\n\u001b[1;32m     37\u001b[0m     examples: \u001b[38;5;28mlist\u001b[39m[Any] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mlist\u001b[39m[\u001b[38;5;28mlist\u001b[39m[Any]] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mstr\u001b[39m,\n\u001b[1;32m     38\u001b[0m     inputs: Component \u001b[38;5;241m|\u001b[39m Sequence[Component],\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     54\u001b[0m     visible: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m     55\u001b[0m ):\n\u001b[1;32m     56\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component.\"\"\"\u001b[39;00m\n\u001b[0;32m---> 57\u001b[0m     examples_obj \u001b[38;5;241m=\u001b[39m \u001b[43mExamples\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m     58\u001b[0m \u001b[43m        \u001b[49m\u001b[43mexamples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexamples\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     59\u001b[0m \u001b[43m        \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     60\u001b[0m \u001b[43m        \u001b[49m\u001b[43moutputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     61\u001b[0m \u001b[43m        \u001b[49m\u001b[43mfn\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     62\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcache_examples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_examples\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     63\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcache_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     64\u001b[0m \u001b[43m        \u001b[49m\u001b[43mexamples_per_page\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexamples_per_page\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     65\u001b[0m \u001b[43m        \u001b[49m\u001b[43m_api_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_api_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     66\u001b[0m \u001b[43m        \u001b[49m\u001b[43mlabel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlabel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     67\u001b[0m \u001b[43m        \u001b[49m\u001b[43melem_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43melem_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     68\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrun_on_click\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_on_click\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     69\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpreprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpreprocess\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     70\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpostprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpostprocess\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     71\u001b[0m \u001b[43m        \u001b[49m\u001b[43mapi_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mapi_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     72\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbatch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbatch\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     73\u001b[0m \u001b[43m        \u001b[49m\u001b[43mexample_labels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexample_labels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     74\u001b[0m \u001b[43m        \u001b[49m\u001b[43mvisible\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvisible\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     75\u001b[0m \u001b[43m        \u001b[49m\u001b[43m_initiated_directly\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m     76\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     77\u001b[0m     examples_obj\u001b[38;5;241m.\u001b[39mcreate()\n\u001b[1;32m     78\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m examples_obj\n",
      "File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/site-packages/gradio/helpers.py:294\u001b[0m, in \u001b[0;36mExamples.__init__\u001b[0;34m(self, examples, inputs, outputs, fn, cache_examples, cache_mode, examples_per_page, _api_mode, label, elem_id, run_on_click, preprocess, postprocess, api_name, batch, example_labels, visible, _initiated_directly)\u001b[0m\n\u001b[1;32m    291\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset\u001b[38;5;241m.\u001b[39msamples:\n\u001b[1;32m    292\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m index, example \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnon_none_examples):\n\u001b[1;32m    293\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnon_none_processed_examples[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset\u001b[38;5;241m.\u001b[39msamples[index]] \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 294\u001b[0m             \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_processed_example\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexample\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    295\u001b[0m         )\n\u001b[1;32m    297\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcache_examples \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlazy\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m    298\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m    299\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWill cache examples in \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mutils\u001b[38;5;241m.\u001b[39mabspath(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcached_folder)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m directory at first use.\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m    300\u001b[0m         end\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m    301\u001b[0m     )\n",
      "File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/site-packages/gradio/helpers.py:328\u001b[0m, in \u001b[0;36mExamples._get_processed_example\u001b[0;34m(self, example)\u001b[0m\n\u001b[1;32m    324\u001b[0m sub \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m    325\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m component, sample \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(\n\u001b[1;32m    326\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minputs_with_examples, example, strict\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m    327\u001b[0m ):\n\u001b[0;32m--> 328\u001b[0m     prediction_value \u001b[38;5;241m=\u001b[39m \u001b[43mcomponent\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpostprocess\u001b[49m\u001b[43m(\u001b[49m\u001b[43msample\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    329\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(prediction_value, (GradioRootModel, GradioModel)):\n\u001b[1;32m    330\u001b[0m         prediction_value \u001b[38;5;241m=\u001b[39m prediction_value\u001b[38;5;241m.\u001b[39mmodel_dump()\n",
      "File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/site-packages/gradio/components/file.py:223\u001b[0m, in \u001b[0;36mFile.postprocess\u001b[0;34m(self, value)\u001b[0m\n\u001b[1;32m    209\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m ListFiles(\n\u001b[1;32m    210\u001b[0m         root\u001b[38;5;241m=\u001b[39m[\n\u001b[1;32m    211\u001b[0m             FileData(\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    217\u001b[0m         ]\n\u001b[1;32m    218\u001b[0m     )\n\u001b[1;32m    219\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    220\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m FileData(\n\u001b[1;32m    221\u001b[0m         path\u001b[38;5;241m=\u001b[39mvalue,\n\u001b[1;32m    222\u001b[0m         orig_name\u001b[38;5;241m=\u001b[39mPath(value)\u001b[38;5;241m.\u001b[39mname,\n\u001b[0;32m--> 223\u001b[0m         size\u001b[38;5;241m=\u001b[39m\u001b[43mPath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mst_size,\n\u001b[1;32m    224\u001b[0m     )\n",
      "File \u001b[0;32m~/anaconda3/envs/grad/lib/python3.10/pathlib.py:1097\u001b[0m, in \u001b[0;36mPath.stat\u001b[0;34m(self, follow_symlinks)\u001b[0m\n\u001b[1;32m   1092\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mstat\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m, follow_symlinks\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[1;32m   1093\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m   1094\u001b[0m \u001b[38;5;124;03m    Return the result of the stat() system call on this path, like\u001b[39;00m\n\u001b[1;32m   1095\u001b[0m \u001b[38;5;124;03m    os.stat() does.\u001b[39;00m\n\u001b[1;32m   1096\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1097\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_accessor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfollow_symlinks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_symlinks\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'sample_emails.csv'"
     ]
    }
   ],
   "source": [
    "demo = gr.Interface(\n",
    "    fn=classify_text,\n",
    "    inputs=gr.Textbox(label=\"Email/Message\", placeholder=\"Enter text here...\"),\n",
    "    outputs=gr.Label(label=\"Classification Results\"),\n",
    "    title=\"Spamedar\",\n",
    "    description=\"Copy your email to find out if it's a is Spam or Ham.πŸ‘‡\",\n",
    "    examples=[\n",
    "        [\"Hey, can we meet tomorrow to discuss the project?\"],\n",
    "        [\"WINNER! You've been selected for a $1000 Walmart Gift Card!\"],\n",
    "        [\"Your account needs verification. Click here to confirm your details.\"]\n",
    "    ]\n",
    ")\n",
    "\n",
    "demo.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "73be7578-bc18-4af7-8a00-52b6ee4b21e9",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}