File size: 11,165 Bytes
477b130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
{
"cells": [
{
"cell_type": "markdown",
"id": "53e9feaa-53de-4377-8d45-aa1f7264ae3a",
"metadata": {},
"source": [
"### First Neccesary libararies needs to be loaded."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8864f53f-15d2-403c-a905-3da509cfb050",
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr\n",
"import transformers\n",
"from transformers import pipeline\n",
"import tf_keras as keras\n",
"import pandas as pd\n",
"import tempfile\n",
"import os"
]
},
{
"cell_type": "markdown",
"id": "5bb130f0-d8c8-459d-918f-84025c93bc05",
"metadata": {},
"source": [
"### Now we import our already pre-trained model from "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1c4e29a8-9b24-47d6-b14b-0e2a7e4d66a1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFBertForSequenceClassification: ['bert.embeddings.position_ids']\n",
"- This IS expected if you are initializing TFBertForSequenceClassification from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing TFBertForSequenceClassification from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).\n",
"All the weights of TFBertForSequenceClassification were initialized from the PyTorch model.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFBertForSequenceClassification for predictions without further training.\n",
"Device set to use 0\n"
]
}
],
"source": [
"# Load pre-trained spam classifier\n",
"spam_classifier = pipeline(\n",
" \"text-classification\",\n",
" model=\"mrm8488/bert-tiny-finetuned-sms-spam-detection\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9cb4ab66-2833-40bd-87cb-4d712398e431",
"metadata": {},
"source": [
"### Since single email check is hassle we will make a function for batch classication\n",
"### we should assume certain file template or format so our program knows what to expect"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b8ae7b3b-5273-4242-85db-b5cb622a4046",
"metadata": {},
"outputs": [],
"source": [
"def classify_batch(file):\n",
" \"\"\"Process uploaded CSV/TXT file with multiple emails\"\"\"\n",
" try:\n",
" results = []\n",
" \n",
" # Check if file exists\n",
" if not file.name:\n",
" raise gr.Error(\"No file uploaded\")\n",
"\n",
" # --- CSV File Handling ---\n",
" if file.name.endswith('.csv'):\n",
" df = pd.read_csv(file)\n",
" \n",
" # Check for required email column\n",
" if 'email' not in df.columns:\n",
" raise gr.Error(\"CSV file must contain a column named 'email'\")\n",
" \n",
" emails = df['email'].tolist()\n",
"\n",
" # --- Text File Handling ---\n",
" elif file.name.endswith('.txt'):\n",
" with open(file.name, 'r') as f:\n",
" emails = f.readlines()\n",
" \n",
" # --- Unsupported Format ---\n",
" else:\n",
" raise gr.Error(\"Unsupported file format. Only CSV/TXT accepted\")\n",
"\n",
" # Process emails (common for both formats)\n",
" emails = emails[:100] # Limit to 100 emails\n",
" for email in emails:\n",
" # Handle empty lines in text files\n",
" if not email.strip():\n",
" continue\n",
" \n",
" prediction = spam_classifier(email.strip())[0]\n",
" results.append({\n",
" \"email\": email.strip()[:50] + \"...\",\n",
" \"label\": \"SPAM\" if prediction[\"label\"] == \"LABEL_1\" else \"HAM\",\n",
" \"confidence\": f\"{prediction['score']:.4f}\"\n",
" })\n",
"\n",
" return pd.DataFrame(results)\n",
"\n",
" except gr.Error as e:\n",
" raise e # Show pop-up for expected errors\n",
" except Exception as e:\n",
" raise gr.Error(f\"Processing error: {str(e)}\")"
]
},
{
"cell_type": "markdown",
"id": "6ccb5108-a5d4-4f61-b363-dc4c9d25b4fb",
"metadata": {},
"source": [
"### We define simple function for classification"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1336344b-54c3-431d-8d89-c351b0c24f80",
"metadata": {},
"outputs": [],
"source": [
"def classify_text(text):\n",
" result = spam_classifier(text)[0]\n",
" return {\n",
" \"Spam\": result[\"score\"] if result[\"label\"] == \"LABEL_1\" else 1 - result[\"score\"],\n",
" \"Ham\": result[\"score\"] if result[\"label\"] == \"LABEL_0\" else 1 - result[\"score\"]\n",
" }"
]
},
{
"cell_type": "markdown",
"id": "4559470b-1356-4f9d-b977-44bfbe117f3d",
"metadata": {},
"source": [
"### using gradio we will make a simple interface for our program"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "67927628-4ca2-43ac-80c3-a1f9d4771d5d",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7868\n",
"Caching examples at: '/Users/techgarage/Projects/spamedar/.gradio/cached_examples/143'\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7868/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"with gr.Blocks(title=\"Spam Classifier Pro\") as demo:\n",
" gr.Markdown(\"# π§ Welcome to Spamedar!\")\n",
" \n",
" \n",
" with gr.Tab(\"βοΈ Single Email\"):\n",
" gr.Interface(\n",
" description=\"<h2>Copy your email to find out if it's a is Spam or Hamπ<h2>\",\n",
" fn=classify_text,\n",
" inputs=gr.Textbox(label=\"Input Email\", lines=3),\n",
" outputs=gr.Label(label=\"Classification\"),\n",
" examples=[\n",
" [\"Urgent: Verify your account details now!\"],\n",
" [\"Hey, can we meet tomorrow to discuss the project?\"],\n",
" [\"WINNER! You've been selected for a $1000 Walmart Gift Card!\"],\n",
" [\"Your account needs verification. Click here to confirm your details.\"],\n",
" [\"Meeting rescheduled to Friday 2 PM\"]\n",
" ]\n",
" )\n",
" current_dir = os.getcwd()\n",
" with gr.Tab(\"π¨ Multiple Emails\"):\n",
" gr.Markdown(\"## Upload email batch (CSV or TXT)\")\n",
" file_input = gr.File(label=\"Upload File\", file_types=[\".csv\", \".txt\"])\n",
" clear_btn = gr.Button(\"Clear Selection\", variant=\"secondary\")\n",
" output_table = gr.Dataframe(\n",
" headers=[\"email\", \"label\", \"confidence\"],\n",
" datatype=[\"str\", \"str\", \"number\"],\n",
" interactive=False,\n",
" label=\"Classification Results\"\n",
" )\n",
" download_btn = gr.DownloadButton(label=\"Download Results\")\n",
"\n",
" def process_file(file):\n",
" \"\"\"Process file and return (display_df, download_path)\"\"\"\n",
" try:\n",
" if file is None:\n",
" return pd.DataFrame(), None\n",
"\n",
" results_df = classify_batch(file)\n",
" with tempfile.NamedTemporaryFile(suffix=\".csv\", delete=False) as f:\n",
" results_df.to_csv(f.name, index=False)\n",
" return results_df, f.name\n",
" except Exception as e:\n",
" raise gr.Error(f\"Error processing file: {str(e)}\")\n",
"\n",
" def clear_selection():\n",
" ###clear file input and results function\n",
" return None, pd.DataFrame(), None\n",
" \n",
" file_input.upload(\n",
" fn=process_file,\n",
" inputs=file_input,\n",
" outputs=[output_table, download_btn] # Update both components\n",
" )\n",
"\n",
" clear_btn.click(\n",
" fn=clear_selection,\n",
" outputs=[file_input, output_table, download_btn]\n",
" )\n",
"\n",
" example_files= [\n",
" os.path.join(os.getcwd(), \"sample_emails.csv\"),\n",
" os.path.join(os.getcwd(), \"batch_emails.txt\"),\n",
" ]\n",
" if all(os.path.exists(f) for f in example_files):\n",
" gr.Examples(\n",
" examples=[[f] for f in example_files],\n",
" inputs=file_input,\n",
" outputs=[output_table, download_btn],\n",
" fn=process_file,\n",
" cache_examples=True,\n",
" label=\"Click any example below to test:\"\n",
" )\n",
" \n",
" else:\n",
" print(\"Warning: Example files missing. Place these in your project root:\")\n",
" print(\"- sample_emails.csv\")\n",
" print(\"- batch_emails.txt\")\n",
" \n",
"if __name__ == \"__main__\":\n",
" demo.launch()"
]
},
{
"cell_type": "markdown",
"id": "18c2a4bd-0404-46ec-87b1-4f47b5802150",
"metadata": {},
"source": [
"### Thank you for following the guide until the end.ππΎ\n",
"code: Raouf Jivad(with a lil help of GPT π)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|