Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 4 |
+
from langchain.document_loaders import UnstructuredFileLoader
|
| 5 |
+
from langchain.vectorstores.faiss import FAISS
|
| 6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
|
| 8 |
+
from langchain.chains import RetrievalQA
|
| 9 |
+
from langchain.prompts.prompt import PromptTemplate
|
| 10 |
+
from langchain.vectorstores.base import VectorStoreRetriever
|
| 11 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
| 12 |
+
|
| 13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 14 |
+
import torch
|
| 15 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
| 16 |
+
|
| 17 |
+
# Prompt template
|
| 18 |
+
template = """Instruction:
|
| 19 |
+
You are an AI assistant for answering questions about the provided context.
|
| 20 |
+
You are given the following extracted parts of a long document and a question. Provide a detailed answer.
|
| 21 |
+
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
|
| 22 |
+
=======
|
| 23 |
+
{context}
|
| 24 |
+
=======
|
| 25 |
+
Chat History:
|
| 26 |
+
|
| 27 |
+
{question}
|
| 28 |
+
Output:"""
|
| 29 |
+
|
| 30 |
+
QA_PROMPT = PromptTemplate(
|
| 31 |
+
template=template,
|
| 32 |
+
input_variables=["question", "context"]
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Returns a faiss vector store given a txt file
|
| 36 |
+
def prepare_vector_store(filename):
|
| 37 |
+
# Load data
|
| 38 |
+
loader = UnstructuredFileLoader(filename)
|
| 39 |
+
raw_documents = loader.load()
|
| 40 |
+
print(raw_documents[:1000])
|
| 41 |
+
|
| 42 |
+
# Split the text
|
| 43 |
+
text_splitter = CharacterTextSplitter(
|
| 44 |
+
separator="\n\n",
|
| 45 |
+
chunk_size=400,
|
| 46 |
+
chunk_overlap=100,
|
| 47 |
+
length_function=len
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
documents = text_splitter.split_documents(raw_documents)
|
| 51 |
+
print(documents[:3])
|
| 52 |
+
|
| 53 |
+
# Creating a vectorstore
|
| 54 |
+
embeddings = HuggingFaceEmbeddings()
|
| 55 |
+
vectorstore = FAISS.from_documents(documents, embeddings)
|
| 56 |
+
print(embeddings, vectorstore)
|
| 57 |
+
|
| 58 |
+
return vectorstore
|
| 59 |
+
|
| 60 |
+
# Load Phi-2 model from hugging face hub
|
| 61 |
+
model_id = "microsoft/phi-2"
|
| 62 |
+
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 64 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True)
|
| 65 |
+
phi2 = pipeline("text-generation", tokenizer=tokenizer, model=model, max_new_tokens=128, device_map="auto") # GPU
|
| 66 |
+
|
| 67 |
+
phi2.tokenizer.pad_token_id = phi2.model.config.eos_token_id
|
| 68 |
+
hf_model = HuggingFacePipeline(pipeline=phi2)
|
| 69 |
+
|
| 70 |
+
# Retrieveal QA chian
|
| 71 |
+
def get_retrieval_qa_chain(filename):
|
| 72 |
+
llm = hf_model
|
| 73 |
+
retriever = VectorStoreRetriever(
|
| 74 |
+
vectorstore=prepare_vector_store(filename)
|
| 75 |
+
)
|
| 76 |
+
model = RetrievalQA.from_chain_type(
|
| 77 |
+
llm=llm,
|
| 78 |
+
retriever=retriever,
|
| 79 |
+
chain_type_kwargs={"prompt": QA_PROMPT, "verbose": True},
|
| 80 |
+
verbose=True,
|
| 81 |
+
)
|
| 82 |
+
print(filename)
|
| 83 |
+
return model
|
| 84 |
+
|
| 85 |
+
# Question Answering Chain
|
| 86 |
+
qa_chain = get_retrieval_qa_chain(filename="Oppenheimer-movie-wiki.txt")
|
| 87 |
+
|
| 88 |
+
# Generates response using the question answering chain defined earlier
|
| 89 |
+
def generate(question, chat_history):
|
| 90 |
+
query = ""
|
| 91 |
+
for req, res in chat_history:
|
| 92 |
+
query += f"User: {req}\n"
|
| 93 |
+
query += f"Assistant: {res}\n"
|
| 94 |
+
query += f"User: {question}"
|
| 95 |
+
|
| 96 |
+
result = qa_chain.invoke({"query": query})
|
| 97 |
+
response = result["result"].strip()
|
| 98 |
+
response = response.split("\n\n")[0].strip()
|
| 99 |
+
|
| 100 |
+
if "User:" in response:
|
| 101 |
+
response = response.split("User:")[0].strip()
|
| 102 |
+
if "INPUT:" in response:
|
| 103 |
+
response = response.split("INPUT:")[0].strip()
|
| 104 |
+
if "Assistant:" in response:
|
| 105 |
+
response = response.split("Assistant:")[1].strip()
|
| 106 |
+
|
| 107 |
+
chat_history.append((question, response))
|
| 108 |
+
|
| 109 |
+
return "", chat_history
|
| 110 |
+
|
| 111 |
+
# replaces the retreiver in the question answering chain whenever a new file is uploaded
|
| 112 |
+
def upload_file(qa_chain):
|
| 113 |
+
def uploader(file):
|
| 114 |
+
print(file)
|
| 115 |
+
qa_chain.retriever = VectorStoreRetriever(
|
| 116 |
+
vectorstore=prepare_vector_store(file)
|
| 117 |
+
)
|
| 118 |
+
return file
|
| 119 |
+
return uploader
|
| 120 |
+
|
| 121 |
+
with gr.Blocks() as demo:
|
| 122 |
+
gr.Markdown("""
|
| 123 |
+
# RAG-Phi-2 Chatbot demo
|
| 124 |
+
### This chatbot uses the Phi-2 language model and retrieval augmented generation to allow you to add domain-specific knowledge by uploading a txt file.
|
| 125 |
+
""")
|
| 126 |
+
|
| 127 |
+
file_output = gr.File(label="txt file")
|
| 128 |
+
upload_button = gr.UploadButton(
|
| 129 |
+
label="Click to upload a txt file",
|
| 130 |
+
file_types=["text"],
|
| 131 |
+
file_count="single"
|
| 132 |
+
)
|
| 133 |
+
upload_button.upload(upload_file(qa_chain), upload_button, file_output)
|
| 134 |
+
|
| 135 |
+
gr.Markdown("""
|
| 136 |
+
### Upload a txt file that contains the text data that you would like to augment the model with.
|
| 137 |
+
If you don't have one, there is a default text data already loaded, the new Oppenheimer movie's wikipedia page.
|
| 138 |
+
""")
|
| 139 |
+
|
| 140 |
+
chatbot = gr.Chatbot(label="RAG Phi-2 Chatbot")
|
| 141 |
+
msg = gr.Textbox(label="Message", placeholder="Enter text here")
|
| 142 |
+
|
| 143 |
+
clear = gr.ClearButton([msg, chatbot])
|
| 144 |
+
msg.submit(fn=generate, inputs=[msg, chatbot], outputs=[msg, chatbot])
|
| 145 |
+
|
| 146 |
+
demo.launch()
|