|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Dict, Tuple, List, Literal, Optional |
|
import math |
|
|
|
import torch |
|
from torch.nn.utils.rnn import pad_sequence |
|
import torchvision.transforms as T |
|
from transformers import LlamaTokenizerFast |
|
from transformers.processing_utils import ProcessorMixin |
|
from PIL import Image, ImageOps |
|
|
|
from .conversation import get_conv_template |
|
|
|
|
|
def select_best_resolution(image_size, candidate_resolutions): |
|
|
|
original_width, original_height = image_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float("inf") |
|
|
|
for width, height in candidate_resolutions: |
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) |
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) |
|
wasted_resolution = (width * height) - effective_resolution |
|
|
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
|
|
return best_fit |
|
|
|
|
|
class DictOutput(object): |
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def __getitem__(self, item): |
|
return self.__dict__[item] |
|
|
|
def __setitem__(self, key, value): |
|
self.__dict__[key] = value |
|
|
|
|
|
|
|
@dataclass |
|
class VLChatProcessorOutput(DictOutput): |
|
sft_format: str |
|
input_ids: torch.LongTensor |
|
target_ids: torch.LongTensor |
|
images: torch.Tensor |
|
images_seq_mask: torch.BoolTensor |
|
images_spatial_crop: torch.LongTensor |
|
num_image_tokens: List[int] |
|
|
|
def __len__(self): |
|
return len(self.input_ids) |
|
|
|
|
|
@dataclass |
|
class BatchCollateOutput(DictOutput): |
|
sft_format: List[str] |
|
input_ids: torch.LongTensor |
|
labels: torch.LongTensor |
|
images: torch.Tensor |
|
attention_mask: torch.Tensor |
|
images_seq_mask: torch.BoolTensor |
|
images_spatial_crop: torch.LongTensor |
|
seq_lens: List[int] |
|
|
|
def to(self, device, dtype=torch.bfloat16): |
|
self.input_ids = self.input_ids.to(device) |
|
self.labels = self.labels.to(device) |
|
self.attention_mask = self.attention_mask.to(device) |
|
self.images_seq_mask = self.images_seq_mask.to(device) |
|
self.images_spatial_crop = self.images_spatial_crop.to(device) |
|
self.images = self.images.to(device=device, dtype=dtype) |
|
return self |
|
|
|
|
|
class ImageTransform(object): |
|
def __init__( |
|
self, |
|
mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5), |
|
std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5), |
|
normalize: bool = True |
|
): |
|
self.mean = mean |
|
self.std = std |
|
self.normalize = normalize |
|
|
|
transform_pipelines = [ |
|
T.ToTensor() |
|
] |
|
|
|
if normalize: |
|
transform_pipelines.append(T.Normalize(mean, std)) |
|
|
|
self.transform = T.Compose(transform_pipelines) |
|
|
|
def __call__(self, pil_img: Image.Image): |
|
x = self.transform(pil_img) |
|
return x |
|
|
|
|
|
|
|
class DeepseekVLV2Processor(ProcessorMixin): |
|
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") |
|
attributes = ["tokenizer"] |
|
|
|
def __init__( |
|
self, |
|
tokenizer: LlamaTokenizerFast, |
|
candidate_resolutions: Tuple[Tuple[int, int]], |
|
patch_size: int, |
|
downsample_ratio: int, |
|
image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5), |
|
image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5), |
|
normalize: bool = True, |
|
image_token: str = "<image>", |
|
pad_token: str = "<|▁pad▁|>", |
|
add_special_token: bool = False, |
|
sft_format: str = "deepseek", |
|
mask_prompt: bool = True, |
|
ignore_id: int = -100, |
|
**kwargs, |
|
): |
|
|
|
self.candidate_resolutions = candidate_resolutions |
|
self.image_size = candidate_resolutions[0][0] |
|
self.patch_size = patch_size |
|
self.image_mean = image_mean |
|
self.image_std = image_std |
|
self.normalize = normalize |
|
self.downsample_ratio = downsample_ratio |
|
|
|
self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize) |
|
self.tokenizer = tokenizer |
|
self.tokenizer.padding_side = 'left' |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
self.tokenizer.add_special_tokens({'pad_token': pad_token}) |
|
print(f"Add pad token = ['{pad_token}'] to the tokenizer\n" |
|
f"{pad_token}:{tokenizer.encode(pad_token, add_special_tokens=False)[0]}") |
|
|
|
|
|
image_token_id = self.tokenizer.vocab.get(image_token) |
|
if image_token_id is None: |
|
special_tokens = [image_token] |
|
special_tokens_dict = {"additional_special_tokens": special_tokens} |
|
self.tokenizer.add_special_tokens(special_tokens_dict) |
|
self.image_token_id = self.tokenizer.vocab.get(image_token) |
|
print(f"Add image token = ['{image_token}'] to the tokenizer\n" |
|
f"{image_token}:{tokenizer.encode(image_token, add_special_tokens=False)[0]}") |
|
|
|
|
|
|
|
special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>'] |
|
special_tokens_dict = {"additional_special_tokens": special_tokens} |
|
self.tokenizer.add_special_tokens(special_tokens_dict) |
|
print(f"Add grounding-related tokens = {special_tokens} to the tokenizer with input_ids\n" |
|
f"<|ref|>:{tokenizer.encode('<|ref|>', add_special_tokens=False)[0]}\n" |
|
f"<|/ref|>:{tokenizer.encode('<|/ref|>', add_special_tokens=False)[0]}\n" |
|
f"<|det|>:{tokenizer.encode('<|det|>', add_special_tokens=False)[0]}\n" |
|
f"<|/det|>:{tokenizer.encode('<|/det|>', add_special_tokens=False)[0]}\n" |
|
f"<|grounding|>:{tokenizer.encode('<|grounding|>', add_special_tokens=False)[0]}") |
|
|
|
|
|
special_tokens = ["<|User|>", "<|Assistant|>"] |
|
special_tokens_dict = {"additional_special_tokens": special_tokens} |
|
self.tokenizer.add_special_tokens(special_tokens_dict) |
|
print(f"Add chat tokens = {special_tokens} to the tokenizer with input_ids\n" |
|
f"<|User|>:{tokenizer.encode('<|User|>', add_special_tokens=False)[0]}\n" |
|
f"<|Assistant|>:{tokenizer.encode('<|Assistant|>', add_special_tokens=False)[0]}\n") |
|
|
|
self.image_token = image_token |
|
self.pad_token = pad_token |
|
self.add_special_token = add_special_token |
|
self.sft_format = sft_format |
|
self.mask_prompt = mask_prompt |
|
self.ignore_id = ignore_id |
|
|
|
super().__init__( |
|
tokenizer, |
|
**kwargs, |
|
) |
|
|
|
def new_chat_template(self): |
|
conv = get_conv_template(self.sft_format) |
|
return conv |
|
|
|
def format_messages( |
|
self, |
|
conversations: List[Dict[str, str]], |
|
sft_format: str = "deepseek", |
|
system_prompt: str = "", |
|
): |
|
""" |
|
Applies the SFT template to conversation. |
|
|
|
Args: |
|
conversations (List[Dict]): A List of messages. |
|
sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek". |
|
system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "". |
|
|
|
Returns: |
|
sft_prompt (str): The formatted text. |
|
""" |
|
|
|
conv = get_conv_template(sft_format) |
|
conv.set_system_message(system_prompt) |
|
for message in conversations: |
|
conv.append_message(message["role"], message["content"].strip()) |
|
sft_prompt = conv.get_prompt().strip() |
|
|
|
return sft_prompt |
|
|
|
def format_messages_v2(self, messages, pil_images, systems=None): |
|
"""play the role of format_messages_v2 and get_images_info in the last version""" |
|
tokenized_data = [] |
|
masked_tokenized_data = [] |
|
images_list = [] |
|
images_seq_mask = [] |
|
images_spatial_crop = [] |
|
num_image_tokens = [] |
|
|
|
image_index = 0 |
|
|
|
conv = get_conv_template(self.sft_format) |
|
conv_system_message = conv.system_message |
|
|
|
for idx, message in enumerate(messages): |
|
if idx == 0: |
|
tokenized_data += [self.bos_id] |
|
masked_tokenized_data += [self.bos_id] |
|
images_seq_mask += [False] |
|
conv.system_message = conv_system_message |
|
else: |
|
conv.system_message = '' |
|
|
|
if message['role'] == conv.roles[0] or message['role'] == "user": |
|
conv.reset_message() |
|
conv.append_message(conv.roles[0], str(message['content']).strip()) |
|
conv.append_message(conv.roles[1], '') |
|
formatted_question = conv.get_prompt() |
|
tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images( |
|
formatted_question, |
|
pil_images[image_index: image_index + formatted_question.count(self.image_token)], |
|
bos=False, |
|
eos=False, |
|
cropping=len(pil_images) <= 2 |
|
) |
|
image_index += formatted_question.count(self.image_token) |
|
|
|
tokenized_data += tokenized_str |
|
if self.mask_prompt: |
|
masked_tokenized_data += [self.ignore_id] * len(tokenized_str) |
|
else: |
|
masked_tokenized_data += tokenized_str |
|
images_list += images |
|
images_seq_mask += seq_mask |
|
images_spatial_crop += spatial_crop |
|
num_image_tokens += n_image_tokens |
|
|
|
elif message['role'] == conv.roles[1] or message['role'] == "assistant": |
|
formatted_answer = message['content'].strip() |
|
assert formatted_answer.count( |
|
self.image_token) == 0, f"there should be no {self.image_token} in the assistant's reply, but got {messages}" |
|
tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images( |
|
formatted_answer, |
|
[], |
|
bos=False, |
|
eos=True, |
|
cropping=len(pil_images) <= 2) |
|
|
|
tokenized_data += tokenized_str |
|
masked_tokenized_data += tokenized_str |
|
images_seq_mask += seq_mask |
|
|
|
elif message['role'] == 'system' or message['role'] == 'deepseekapi-sys': |
|
|
|
assert idx == 0, 'system information should only exist in the begining of the conversation' |
|
formatted_system = message['content'].strip() |
|
tokenized_str = self.encode(formatted_system, bos=False, eos=False) |
|
tokenized_data += tokenized_str |
|
if self.mask_prompt: |
|
masked_tokenized_data += [self.ignore_id] * len(tokenized_str) |
|
else: |
|
masked_tokenized_data += tokenized_str |
|
seq_mask = [False] * len(tokenized_str) |
|
images_seq_mask += seq_mask |
|
|
|
else: |
|
assert False, f"Unknown role: {message['role']}" |
|
|
|
assert len(tokenized_data) == len( |
|
images_seq_mask), f"format_messages_v2: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}" |
|
assert len(images_spatial_crop) == len(num_image_tokens), f"image number should be compatible" |
|
|
|
return tokenized_data, masked_tokenized_data, images_list, images_seq_mask, images_spatial_crop, num_image_tokens |
|
|
|
def format_prompts( |
|
self, |
|
prompts: str, |
|
sft_format: str = "deepseek", |
|
system_prompt: str = "", |
|
): |
|
""" |
|
Applies the SFT template to prompts. |
|
|
|
Args: |
|
prompts (str): the non-sft formatted prompt; |
|
sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek". |
|
system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "". |
|
|
|
Returns: |
|
sft_prompt (str): The formatted text. |
|
""" |
|
|
|
conv = get_conv_template(sft_format) |
|
conv.set_system_message(system_prompt) |
|
conv.append_message(conv.roles[0], prompts.strip()) |
|
conv.append_message(conv.roles[1], "") |
|
|
|
sft_prompt = conv.get_prompt().strip() |
|
|
|
return sft_prompt |
|
|
|
@property |
|
def bos_id(self): |
|
return self.tokenizer.bos_token_id |
|
|
|
@property |
|
def eos_id(self): |
|
return self.tokenizer.eos_token_id |
|
|
|
@property |
|
def pad_id(self): |
|
return self.tokenizer.pad_token_id |
|
|
|
def encode(self, text: str, bos: bool = True, eos: bool = False): |
|
t = self.tokenizer.encode(text, add_special_tokens=False) |
|
|
|
if bos: |
|
t = [self.bos_id] + t |
|
if eos: |
|
t = t + [self.eos_id] |
|
|
|
return t |
|
|
|
def decode(self, t: List[int], **kwargs) -> str: |
|
return self.tokenizer.decode(t, **kwargs) |
|
|
|
def process_one( |
|
self, |
|
prompt: str = None, |
|
conversations: List[Dict[str, str]] = None, |
|
images: List[Image.Image] = None, |
|
apply_sft_format: bool = False, |
|
inference_mode: bool = True, |
|
system_prompt: str = "", |
|
**kwargs, |
|
): |
|
""" |
|
|
|
Args: |
|
prompt (str): the formatted prompt; |
|
conversations (List[Dict]): conversations with a list of messages; |
|
images (List[ImageType]): the list of images; |
|
apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt; |
|
if conversations is not None, then it will always apply the SFT format to conversations; |
|
inference_mode (bool): if True, then remove the last eos token; |
|
system_prompt (str): the system prompt; |
|
**kwargs: |
|
|
|
Returns: |
|
outputs (BaseProcessorOutput): the output of the processor, |
|
- input_ids (torch.LongTensor): [N + image tokens] |
|
- target_ids (torch.LongTensor): [N + image tokens] |
|
- images (torch.FloatTensor): [n_images, 3, H, W] |
|
- image_id (int): the id of the image token |
|
- num_image_tokens (List[int]): the number of image tokens |
|
""" |
|
|
|
assert ( |
|
prompt is None or conversations is None |
|
), "prompt and conversations cannot be used at the same time." |
|
|
|
if prompt is None: |
|
|
|
sft_format = self.format_messages( |
|
conversations=conversations, |
|
sft_format=self.sft_format, |
|
system_prompt=system_prompt, |
|
) |
|
tokenized_str, masked_tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.format_messages_v2( |
|
conversations, images) |
|
else: |
|
if apply_sft_format: |
|
sft_format = self.format_prompts( |
|
prompts=prompt, |
|
sft_format=self.sft_format, |
|
system_prompt=system_prompt |
|
) |
|
else: |
|
sft_format = prompt |
|
tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.tokenize_with_images( |
|
sft_format, images, bos=True, eos=True, cropping=len(images) <= 2) |
|
masked_tokenized_str = [] |
|
for token_index in tokenized_str: |
|
if token_index != self.image_token_id: |
|
masked_tokenized_str.append(token_index) |
|
else: |
|
masked_tokenized_str.append(self.ignore_id) |
|
|
|
assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \ |
|
(f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, " |
|
f"imags_seq_mask's length {len(images_seq_mask)}, are not equal") |
|
|
|
input_ids = torch.LongTensor(tokenized_str) |
|
target_ids = torch.LongTensor(masked_tokenized_str) |
|
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool) |
|
|
|
|
|
target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = self.ignore_id |
|
input_ids[input_ids < 0] = self.pad_id |
|
|
|
if inference_mode: |
|
|
|
assert input_ids[-1] == self.eos_id |
|
input_ids = input_ids[:-1] |
|
target_ids = target_ids[:-1] |
|
images_seq_mask = images_seq_mask[:-1] |
|
|
|
if len(images_list) == 0: |
|
images = torch.zeros((1, 3, self.image_size, self.image_size)) |
|
images_spatial_crop = torch.zeros((1, 2), dtype=torch.long) |
|
else: |
|
images = torch.stack(images_list, dim=0) |
|
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long) |
|
|
|
prepare = VLChatProcessorOutput( |
|
sft_format=sft_format, |
|
input_ids=input_ids, |
|
target_ids=target_ids, |
|
images=images, |
|
images_seq_mask=images_seq_mask, |
|
images_spatial_crop=images_spatial_crop, |
|
num_image_tokens=num_image_tokens |
|
) |
|
|
|
return prepare |
|
|
|
def __call__( |
|
self, |
|
*, |
|
prompt: str = None, |
|
conversations: List[Dict[str, str]] = None, |
|
images: List[Image.Image] = None, |
|
apply_sft_format: bool = False, |
|
force_batchify: bool = True, |
|
inference_mode: bool = True, |
|
system_prompt: str = "", |
|
**kwargs, |
|
): |
|
""" |
|
|
|
Args: |
|
prompt (str): the formatted prompt; |
|
conversations (List[Dict]): conversations with a list of messages; |
|
images (List[ImageType]): the list of images; |
|
apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt; |
|
if conversations is not None, then it will always apply the SFT format to conversations; |
|
force_batchify (bool): force batchify the inputs; |
|
inference_mode (bool): if True, then remove the last eos token; |
|
system_prompt (str): the system prompt; |
|
**kwargs: |
|
|
|
Returns: |
|
outputs (BaseProcessorOutput): the output of the processor, |
|
- input_ids (torch.LongTensor): [N + image tokens] |
|
- images (torch.FloatTensor): [n_images, 3, H, W] |
|
- image_id (int): the id of the image token |
|
- num_image_tokens (List[int]): the number of image tokens |
|
""" |
|
|
|
prepare = self.process_one( |
|
prompt=prompt, |
|
conversations=conversations, |
|
images=images, |
|
apply_sft_format=apply_sft_format, |
|
inference_mode=inference_mode, |
|
system_prompt=system_prompt |
|
) |
|
|
|
if force_batchify: |
|
prepare = self.batchify([prepare]) |
|
|
|
return prepare |
|
|
|
def tokenize_with_images( |
|
self, |
|
conversation: str, |
|
images: List[Image.Image], |
|
bos: bool = True, |
|
eos: bool = True, |
|
cropping: bool = True, |
|
): |
|
"""Tokenize text with <image> tags.""" |
|
assert conversation.count(self.image_token) == len(images) |
|
text_splits = conversation.split(self.image_token) |
|
images_list, images_seq_mask, images_spatial_crop = [], [], [] |
|
num_image_tokens = [] |
|
tokenized_str = [] |
|
for text_sep, image in zip(text_splits, images): |
|
"""encode text_sep""" |
|
tokenized_sep = self.encode(text_sep, bos=False, eos=False) |
|
tokenized_str += tokenized_sep |
|
images_seq_mask += [False] * len(tokenized_sep) |
|
|
|
"""select best resolution for anyres""" |
|
if cropping: |
|
best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions) |
|
else: |
|
best_width, best_height = self.image_size, self.image_size |
|
|
|
|
|
"""process the global view""" |
|
global_view = ImageOps.pad(image, (self.image_size, self.image_size), |
|
color=tuple(int(x * 255) for x in self.image_transform.mean)) |
|
images_list.append(self.image_transform(global_view)) |
|
|
|
"""process the local views""" |
|
local_view = ImageOps.pad(image, (best_width, best_height), |
|
color=tuple(int(x * 255) for x in self.image_transform.mean)) |
|
for i in range(0, best_height, self.image_size): |
|
for j in range(0, best_width, self.image_size): |
|
images_list.append( |
|
self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size)))) |
|
|
|
"""record height / width crop num""" |
|
num_width_tiles, num_height_tiles = best_width // self.image_size, best_height // self.image_size |
|
images_spatial_crop.append([num_width_tiles, num_height_tiles]) |
|
|
|
"""add image tokens""" |
|
h = w = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio) |
|
|
|
tokenized_image = [self.image_token_id] * h * (w + 1) |
|
|
|
tokenized_image += [self.image_token_id] |
|
|
|
tokenized_image += [self.image_token_id] * (num_height_tiles * h) * (num_width_tiles * w + 1) |
|
|
|
tokenized_str += tokenized_image |
|
images_seq_mask += [True] * len(tokenized_image) |
|
num_image_tokens.append(len(tokenized_image)) |
|
|
|
|
|
"""process the last text split""" |
|
tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False) |
|
tokenized_str += tokenized_sep |
|
images_seq_mask += [False] * len(tokenized_sep) |
|
|
|
"""add the bos and eos tokens""" |
|
if bos: |
|
tokenized_str = [self.bos_id] + tokenized_str |
|
images_seq_mask = [False] + images_seq_mask |
|
if eos: |
|
tokenized_str = tokenized_str + [self.eos_id] |
|
images_seq_mask = images_seq_mask + [False] |
|
|
|
assert len(tokenized_str) == len( |
|
images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}" |
|
|
|
return tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens |
|
|
|
def batchify( |
|
self, |
|
sample_list: List[VLChatProcessorOutput], |
|
padding: Literal["left", "right"] = "left" |
|
) -> BatchCollateOutput: |
|
""" |
|
Preprocesses the inputs for multimodal inference. |
|
|
|
Args: |
|
sample_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput. |
|
padding (str): The padding method. Defaults to "left". |
|
|
|
Returns: |
|
BatchCollateOutput: A dictionary of the inputs to use for multimodal inference. |
|
""" |
|
|
|
batched_sft_format = [sample.sft_format for sample in sample_list] |
|
batched_input_ids = [sample.input_ids for sample in sample_list] |
|
batched_labels = [sample.target_ids for sample in sample_list] |
|
batched_images_seq_mask = [sample["images_seq_mask"] for sample in sample_list] |
|
seq_lens = [len(sample) for sample in sample_list] |
|
|
|
"""padding input_ids and images_seq_mask""" |
|
if padding == "left": |
|
|
|
|
|
|
|
|
|
padded_input_ids = self.tokenizer.pad({"input_ids": batched_input_ids}) |
|
batched_input_ids, batched_attention_mask = padded_input_ids["input_ids"], padded_input_ids[ |
|
"attention_mask"].bool() |
|
batched_labels = self.tokenizer.pad({"input_ids": batched_labels})["input_ids"] |
|
batched_labels[batched_labels == self.pad_id] = self.ignore_id |
|
batched_images_seq_mask = self.tokenizer.pad({"input_ids": batched_images_seq_mask})["input_ids"] |
|
batched_images_seq_mask[batched_images_seq_mask == self.pad_id] = False |
|
else: |
|
batched_input_ids = pad_sequence(batched_input_ids, batch_first=True, padding_value=self.pad_id) |
|
batched_labels = pad_sequence(batched_labels, batch_first=True, padding_value=self.ignore_id) |
|
batched_images_seq_mask = pad_sequence(batched_images_seq_mask, batch_first=True, padding_value=0) |
|
batched_attention_mask = batched_input_ids != self.pad_id |
|
|
|
"""padding images to max_patch_num""" |
|
max_n_patches = max(sample["images"].shape[0] for sample in sample_list) |
|
batched_images = [] |
|
for sample in sample_list: |
|
images = sample["images"] |
|
n_pads = max_n_patches - images.shape[0] |
|
if n_pads > 0: |
|
pad_images = torch.zeros((n_pads, *images.shape[1:]), dtype=images.dtype) |
|
images = torch.cat([images, pad_images], dim=0) |
|
batched_images.append(images) |
|
batched_images = torch.stack(batched_images, dim=0) |
|
|
|
"""padding images_spatial_crop to max_n_images""" |
|
max_n_images = max(sample["images_spatial_crop"].shape[0] for sample in sample_list) |
|
batched_images_spatial_crop = [] |
|
for sample in sample_list: |
|
images_spatial_crop = sample["images_spatial_crop"] |
|
n_pads = max_n_images - sample["images_spatial_crop"].shape[0] |
|
if n_pads > 0: |
|
pad_images_spatial_crop = torch.full((n_pads, 2), 0, dtype=images_spatial_crop.dtype) |
|
images_spatial_crop = torch.cat([images_spatial_crop, pad_images_spatial_crop], dim=0) |
|
batched_images_spatial_crop.append(images_spatial_crop) |
|
batched_images_spatial_crop = torch.stack(batched_images_spatial_crop, dim=0) |
|
|
|
batched_samples = BatchCollateOutput( |
|
input_ids=batched_input_ids, |
|
attention_mask=batched_attention_mask, |
|
labels=batched_labels, |
|
images=batched_images, |
|
images_seq_mask=batched_images_seq_mask, |
|
images_spatial_crop=batched_images_spatial_crop, |
|
sft_format=batched_sft_format, |
|
seq_lens=seq_lens |
|
) |
|
|
|
return batched_samples |
|
|