|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os.path |
|
|
|
from argparse import ArgumentParser |
|
|
|
import io |
|
import sys |
|
import base64 |
|
from PIL import Image |
|
|
|
import gradio as gr |
|
import torch |
|
|
|
from deepseek_vl2.serve.app_modules.gradio_utils import ( |
|
cancel_outputing, |
|
delete_last_conversation, |
|
reset_state, |
|
reset_textbox, |
|
wrap_gen_fn, |
|
) |
|
from deepseek_vl2.serve.app_modules.overwrites import reload_javascript |
|
from deepseek_vl2.serve.app_modules.presets import ( |
|
CONCURRENT_COUNT, |
|
MAX_EVENTS, |
|
description, |
|
description_top, |
|
title |
|
) |
|
from deepseek_vl2.serve.app_modules.utils import ( |
|
configure_logger, |
|
is_variable_assigned, |
|
strip_stop_words, |
|
parse_ref_bbox, |
|
pil_to_base64, |
|
display_example |
|
) |
|
|
|
from deepseek_vl2.serve.inference import ( |
|
convert_conversation_to_prompts, |
|
deepseek_generate, |
|
load_model, |
|
) |
|
from deepseek_vl2.models.conversation import SeparatorStyle |
|
|
|
logger = configure_logger() |
|
|
|
MODELS = [ |
|
"DeepSeek-VL2-tiny", |
|
"DeepSeek-VL2-small", |
|
"DeepSeek-VL2", |
|
|
|
"deepseek-ai/deepseek-vl2-tiny", |
|
"deepseek-ai/deepseek-vl2-small", |
|
"deepseek-ai/deepseek-vl2", |
|
] |
|
|
|
DEPLOY_MODELS = dict() |
|
IMAGE_TOKEN = "<image>" |
|
|
|
examples_list = [ |
|
|
|
[ |
|
["./images/visual_grounding_1.jpeg"], |
|
"<|ref|>The giraffe at the back.<|/ref|>", |
|
], |
|
|
|
|
|
[ |
|
["./images/visual_grounding_2.jpg"], |
|
"找到<|ref|>淡定姐<|/ref|>", |
|
], |
|
|
|
|
|
[ |
|
["./images/visual_grounding_3.png"], |
|
"Find all the <|ref|>Watermelon slices<|/ref|>", |
|
], |
|
|
|
|
|
[ |
|
["./images/grounding_conversation_1.jpeg"], |
|
"<|grounding|>I want to throw out the trash now, what should I do?", |
|
], |
|
|
|
|
|
[ |
|
[ |
|
"./images/incontext_visual_grounding_1.jpeg", |
|
"./images/icl_vg_2.jpeg" |
|
], |
|
"<|grounding|>In the first image, an object within the red rectangle is marked. Locate the object of the same category in the second image." |
|
], |
|
|
|
|
|
[ |
|
["./images/vqa_1.jpg"], |
|
"Describe each stage of this image in detail", |
|
], |
|
|
|
|
|
[ |
|
[ |
|
"./images/multi_image_1.jpeg", |
|
"./images/multi_image_2.jpeg", |
|
"./images/multi_image_3.jpeg" |
|
], |
|
"能帮我用这几个食材做一道菜吗?", |
|
] |
|
|
|
] |
|
|
|
|
|
def fetch_model(model_name: str, dtype=torch.bfloat16): |
|
global args, DEPLOY_MODELS |
|
|
|
if args.local_path: |
|
model_path = args.local_path |
|
else: |
|
model_path = model_name |
|
|
|
if model_name in DEPLOY_MODELS: |
|
model_info = DEPLOY_MODELS[model_name] |
|
print(f"{model_name} has been loaded.") |
|
else: |
|
print(f"{model_name} is loading...") |
|
DEPLOY_MODELS[model_name] = load_model(model_path, dtype=dtype) |
|
print(f"Load {model_name} successfully...") |
|
model_info = DEPLOY_MODELS[model_name] |
|
|
|
return model_info |
|
|
|
|
|
def generate_prompt_with_history( |
|
text, images, history, vl_chat_processor, tokenizer, max_length=2048 |
|
): |
|
""" |
|
Generate a prompt with history for the deepseek application. |
|
|
|
Args: |
|
text (str): The text prompt. |
|
images (list[PIL.Image.Image]): The image prompt. |
|
history (list): List of previous conversation messages. |
|
tokenizer: The tokenizer used for encoding the prompt. |
|
max_length (int): The maximum length of the prompt. |
|
|
|
Returns: |
|
tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None. |
|
""" |
|
global IMAGE_TOKEN |
|
|
|
sft_format = "deepseek" |
|
user_role_ind = 0 |
|
bot_role_ind = 1 |
|
|
|
|
|
conversation = vl_chat_processor.new_chat_template() |
|
|
|
if history: |
|
conversation.messages = history |
|
|
|
if images is not None and len(images) > 0: |
|
|
|
num_image_tags = text.count(IMAGE_TOKEN) |
|
num_images = len(images) |
|
|
|
if num_images > num_image_tags: |
|
pad_image_tags = num_images - num_image_tags |
|
image_tokens = "\n".join([IMAGE_TOKEN] * pad_image_tags) |
|
|
|
|
|
text = image_tokens + "\n" + text |
|
elif num_images < num_image_tags: |
|
remove_image_tags = num_image_tags - num_images |
|
text = text.replace(IMAGE_TOKEN, "", remove_image_tags) |
|
|
|
|
|
text = (text, images) |
|
|
|
conversation.append_message(conversation.roles[user_role_ind], text) |
|
conversation.append_message(conversation.roles[bot_role_ind], "") |
|
|
|
|
|
conversation_copy = conversation.copy() |
|
logger.info("=" * 80) |
|
logger.info(get_prompt(conversation)) |
|
|
|
rounds = len(conversation.messages) // 2 |
|
|
|
for _ in range(rounds): |
|
current_prompt = get_prompt(conversation) |
|
current_prompt = ( |
|
current_prompt.replace("</s>", "") |
|
if sft_format == "deepseek" |
|
else current_prompt |
|
) |
|
|
|
if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length: |
|
return conversation_copy |
|
|
|
if len(conversation.messages) % 2 != 0: |
|
gr.Error("The messages between user and assistant are not paired.") |
|
return |
|
|
|
try: |
|
for _ in range(2): |
|
conversation.messages.pop(0) |
|
except IndexError: |
|
gr.Error("Input text processing failed, unable to respond in this round.") |
|
return None |
|
|
|
gr.Error("Prompt could not be generated within max_length limit.") |
|
return None |
|
|
|
|
|
def to_gradio_chatbot(conv): |
|
"""Convert the conversation to gradio chatbot format.""" |
|
ret = [] |
|
for i, (role, msg) in enumerate(conv.messages[conv.offset:]): |
|
if i % 2 == 0: |
|
if type(msg) is tuple: |
|
msg, images = msg |
|
|
|
if isinstance(images, list): |
|
for j, image in enumerate(images): |
|
if isinstance(image, str): |
|
with open(image, "rb") as f: |
|
data = f.read() |
|
img_b64_str = base64.b64encode(data).decode() |
|
image_str = (f'<img src="data:image/png;base64,{img_b64_str}" ' |
|
f'alt="user upload image" style="max-width: 300px; height: auto;" />') |
|
else: |
|
image_str = pil_to_base64(image, f"user upload image_{j}", max_size=800, min_size=400) |
|
|
|
|
|
msg = msg.replace(IMAGE_TOKEN, image_str, 1) |
|
|
|
else: |
|
pass |
|
|
|
ret.append([msg, None]) |
|
else: |
|
ret[-1][-1] = msg |
|
return ret |
|
|
|
|
|
def to_gradio_history(conv): |
|
"""Convert the conversation to gradio history state.""" |
|
return conv.messages[conv.offset:] |
|
|
|
|
|
def get_prompt(conv) -> str: |
|
"""Get the prompt for generation.""" |
|
system_prompt = conv.system_template.format(system_message=conv.system_message) |
|
if conv.sep_style == SeparatorStyle.DeepSeek: |
|
seps = [conv.sep, conv.sep2] |
|
if system_prompt == "" or system_prompt is None: |
|
ret = "" |
|
else: |
|
ret = system_prompt + seps[0] |
|
for i, (role, message) in enumerate(conv.messages): |
|
if message: |
|
if type(message) is tuple: |
|
message, _ = message |
|
ret += role + ": " + message + seps[i % 2] |
|
else: |
|
ret += role + ":" |
|
return ret |
|
else: |
|
return conv.get_prompt() |
|
|
|
|
|
def transfer_input(input_text, input_images): |
|
print("transferring input text and input image") |
|
|
|
return ( |
|
input_text, |
|
input_images, |
|
gr.update(value=""), |
|
gr.update(value=None), |
|
gr.Button(visible=True) |
|
) |
|
|
|
|
|
@wrap_gen_fn |
|
def predict( |
|
text, |
|
images, |
|
chatbot, |
|
history, |
|
top_p, |
|
temperature, |
|
repetition_penalty, |
|
max_length_tokens, |
|
max_context_length_tokens, |
|
model_select_dropdown, |
|
): |
|
""" |
|
Function to predict the response based on the user's input and selected model. |
|
|
|
Parameters: |
|
user_text (str): The input text from the user. |
|
user_image (str): The input image from the user. |
|
chatbot (str): The chatbot's name. |
|
history (str): The history of the chat. |
|
top_p (float): The top-p parameter for the model. |
|
temperature (float): The temperature parameter for the model. |
|
max_length_tokens (int): The maximum length of tokens for the model. |
|
max_context_length_tokens (int): The maximum length of context tokens for the model. |
|
model_select_dropdown (str): The selected model from the dropdown. |
|
|
|
Returns: |
|
generator: A generator that yields the chatbot outputs, history, and status. |
|
""" |
|
print("running the prediction function") |
|
try: |
|
tokenizer, vl_gpt, vl_chat_processor = fetch_model(model_select_dropdown) |
|
|
|
if text == "": |
|
yield chatbot, history, "Empty context." |
|
return |
|
except KeyError: |
|
yield [[text, "No Model Found"]], [], "No Model Found" |
|
return |
|
|
|
if images is None: |
|
images = [] |
|
|
|
|
|
pil_images = [] |
|
for img_or_file in images: |
|
try: |
|
|
|
if isinstance(images, Image.Image): |
|
pil_images.append(img_or_file) |
|
else: |
|
image = Image.open(img_or_file.name).convert("RGB") |
|
pil_images.append(image) |
|
except Exception as e: |
|
print(f"Error loading image: {e}") |
|
|
|
conversation = generate_prompt_with_history( |
|
text, |
|
pil_images, |
|
history, |
|
vl_chat_processor, |
|
tokenizer, |
|
max_length=max_context_length_tokens, |
|
) |
|
all_conv, last_image = convert_conversation_to_prompts(conversation) |
|
|
|
stop_words = conversation.stop_str |
|
gradio_chatbot_output = to_gradio_chatbot(conversation) |
|
|
|
full_response = "" |
|
with torch.no_grad(): |
|
for x in deepseek_generate( |
|
conversations=all_conv, |
|
vl_gpt=vl_gpt, |
|
vl_chat_processor=vl_chat_processor, |
|
tokenizer=tokenizer, |
|
stop_words=stop_words, |
|
max_length=max_length_tokens, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
top_p=top_p, |
|
chunk_size=args.chunk_size |
|
): |
|
full_response += x |
|
response = strip_stop_words(full_response, stop_words) |
|
conversation.update_last_message(response) |
|
gradio_chatbot_output[-1][1] = response |
|
|
|
|
|
|
|
|
|
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..." |
|
|
|
if last_image is not None: |
|
|
|
vg_image = parse_ref_bbox(response, last_image) |
|
if vg_image is not None: |
|
vg_base64 = pil_to_base64(vg_image, f"vg", max_size=800, min_size=400) |
|
gradio_chatbot_output[-1][1] += vg_base64 |
|
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..." |
|
|
|
print("flushed result to gradio") |
|
torch.cuda.empty_cache() |
|
|
|
if is_variable_assigned("x"): |
|
print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}") |
|
print( |
|
f"temperature: {temperature}, " |
|
f"top_p: {top_p}, " |
|
f"repetition_penalty: {repetition_penalty}, " |
|
f"max_length_tokens: {max_length_tokens}" |
|
) |
|
|
|
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success" |
|
|
|
|
|
|
|
def retry( |
|
text, |
|
images, |
|
chatbot, |
|
history, |
|
top_p, |
|
temperature, |
|
repetition_penalty, |
|
max_length_tokens, |
|
max_context_length_tokens, |
|
model_select_dropdown, |
|
): |
|
if len(history) == 0: |
|
yield (chatbot, history, "Empty context") |
|
return |
|
|
|
chatbot.pop() |
|
history.pop() |
|
text = history.pop()[-1] |
|
if type(text) is tuple: |
|
text, image = text |
|
|
|
yield from predict( |
|
text, |
|
images, |
|
chatbot, |
|
history, |
|
top_p, |
|
temperature, |
|
repetition_penalty, |
|
max_length_tokens, |
|
max_context_length_tokens, |
|
model_select_dropdown, |
|
args.chunk_size |
|
) |
|
|
|
|
|
def preview_images(files): |
|
if files is None: |
|
return [] |
|
|
|
image_paths = [] |
|
for file in files: |
|
|
|
|
|
image_paths.append(file.name) |
|
return image_paths |
|
|
|
|
|
def build_demo(args): |
|
|
|
if not args.lazy_load: |
|
fetch_model(args.model_name) |
|
|
|
with open("deepseek_vl2/serve/assets/custom.css", "r", encoding="utf-8") as f: |
|
customCSS = f.read() |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
history = gr.State([]) |
|
input_text = gr.State() |
|
input_images = gr.State() |
|
|
|
with gr.Row(): |
|
gr.HTML(title) |
|
status_display = gr.Markdown("Success", elem_id="status_display") |
|
gr.Markdown(description_top) |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=4): |
|
with gr.Row(): |
|
chatbot = gr.Chatbot( |
|
elem_id="deepseek_chatbot", |
|
show_share_button=True, |
|
bubble_full_width=False, |
|
height=600, |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
text_box = gr.Textbox( |
|
show_label=False, placeholder="Enter text", container=False |
|
) |
|
with gr.Column( |
|
min_width=70, |
|
): |
|
submitBtn = gr.Button("Send") |
|
with gr.Column( |
|
min_width=70, |
|
): |
|
cancelBtn = gr.Button("Stop") |
|
with gr.Row(): |
|
emptyBtn = gr.Button( |
|
"🧹 New Conversation", |
|
) |
|
retryBtn = gr.Button("🔄 Regenerate") |
|
delLastBtn = gr.Button("🗑️ Remove Last Turn") |
|
|
|
with gr.Column(): |
|
upload_images = gr.Files(file_types=["image"], show_label=True) |
|
gallery = gr.Gallery(columns=[3], height="200px", show_label=True) |
|
|
|
upload_images.change(preview_images, inputs=upload_images, outputs=gallery) |
|
|
|
with gr.Tab(label="Parameter Setting") as parameter_row: |
|
top_p = gr.Slider( |
|
minimum=-0, |
|
maximum=1.0, |
|
value=0.9, |
|
step=0.05, |
|
interactive=True, |
|
label="Top-p", |
|
) |
|
temperature = gr.Slider( |
|
minimum=0, |
|
maximum=1.0, |
|
value=0.1, |
|
step=0.1, |
|
interactive=True, |
|
label="Temperature", |
|
) |
|
repetition_penalty = gr.Slider( |
|
minimum=0.0, |
|
maximum=2.0, |
|
value=1.1, |
|
step=0.1, |
|
interactive=True, |
|
label="Repetition penalty", |
|
) |
|
max_length_tokens = gr.Slider( |
|
minimum=0, |
|
maximum=4096, |
|
value=2048, |
|
step=8, |
|
interactive=True, |
|
label="Max Generation Tokens", |
|
) |
|
max_context_length_tokens = gr.Slider( |
|
minimum=0, |
|
maximum=8192, |
|
value=4096, |
|
step=128, |
|
interactive=True, |
|
label="Max History Tokens", |
|
) |
|
model_select_dropdown = gr.Dropdown( |
|
label="Select Models", |
|
choices=[args.model_name], |
|
multiselect=False, |
|
value=args.model_name, |
|
interactive=True, |
|
) |
|
|
|
|
|
show_images = gr.HTML(visible=False) |
|
|
|
|
|
def format_examples(examples_list): |
|
examples = [] |
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
for images, texts in examples_list: |
|
examples.append([images, display_example(images, current_dir), texts]) |
|
|
|
return examples |
|
|
|
gr.Examples( |
|
examples=format_examples(examples_list), |
|
inputs=[upload_images, show_images, text_box], |
|
) |
|
|
|
gr.Markdown(description) |
|
|
|
input_widgets = [ |
|
input_text, |
|
input_images, |
|
chatbot, |
|
history, |
|
top_p, |
|
temperature, |
|
repetition_penalty, |
|
max_length_tokens, |
|
max_context_length_tokens, |
|
model_select_dropdown, |
|
] |
|
output_widgets = [chatbot, history, status_display] |
|
|
|
transfer_input_args = dict( |
|
fn=transfer_input, |
|
inputs=[text_box, upload_images], |
|
outputs=[input_text, input_images, text_box, upload_images, submitBtn], |
|
show_progress=True, |
|
) |
|
|
|
predict_args = dict( |
|
fn=predict, |
|
inputs=input_widgets, |
|
outputs=output_widgets, |
|
show_progress=True, |
|
) |
|
|
|
retry_args = dict( |
|
fn=retry, |
|
inputs=input_widgets, |
|
outputs=output_widgets, |
|
show_progress=True, |
|
) |
|
|
|
reset_args = dict( |
|
fn=reset_textbox, inputs=[], outputs=[text_box, status_display] |
|
) |
|
|
|
predict_events = [ |
|
text_box.submit(**transfer_input_args).then(**predict_args), |
|
submitBtn.click(**transfer_input_args).then(**predict_args), |
|
] |
|
|
|
emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True) |
|
emptyBtn.click(**reset_args) |
|
retryBtn.click(**retry_args) |
|
|
|
delLastBtn.click( |
|
delete_last_conversation, |
|
[chatbot, history], |
|
output_widgets, |
|
show_progress=True, |
|
) |
|
|
|
cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = ArgumentParser() |
|
parser.add_argument("--model_name", type=str, default="deepseek-ai/deepseek-vl2-small", choices=MODELS, help="model name") |
|
parser.add_argument("--local_path", type=str, default="", help="huggingface ckpt, optional") |
|
parser.add_argument("--ip", type=str, default="0.0.0.0", help="ip address") |
|
parser.add_argument("--port", type=int, default=37913, help="port number") |
|
parser.add_argument("--root_path", type=str, default="", help="root path") |
|
parser.add_argument("--lazy_load", action='store_true') |
|
parser.add_argument("--chunk_size", type=int, default=512, |
|
help="chunk size for the model for prefiiling. " |
|
"When using 40G gpu for vl2-small, set a chunk_size for incremental_prefilling." |
|
"Otherwise, default value is -1, which means we do not use incremental_prefilling.") |
|
args = parser.parse_args() |
|
|
|
demo = build_demo(args) |
|
demo.title = "DeepSeek-VL2-small Chatbot" |
|
|
|
reload_javascript() |
|
|
|
|
|
demo.queue().launch( |
|
favicon_path="deepseek_vl2/serve/assets/favicon.ico", |
|
) |
|
|