File size: 27,473 Bytes
edced0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
from attrdict import AttrDict
from dataclasses import dataclass
import logging
import gc

from einops import rearrange, repeat
from typing import Optional, List, Tuple, Callable, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
)
from transformers.modeling_outputs import ModelOutput
from transformers.configuration_utils import PretrainedConfig
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    PreTrainedModel
)
from transformers.utils import logging

from .siglip_vit import VisionTransformer
from .configuration_deepseek import DeepseekV2Config
from .modeling_deepseek import DeepseekV2ForCausalLM


logger = logging.get_logger(__name__)


class MlpProjector(nn.Module):

    def __init__(self, cfg):

        super().__init__()

        self.cfg = cfg

        if cfg.projector_type == "identity":
            modules = nn.Identity()

        elif cfg.projector_type == "linear":
            modules = nn.Linear(cfg.input_dim, cfg.n_embed)

        elif cfg.projector_type == "mlp_gelu":
            mlp_depth = cfg.depth
            modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
            for _ in range(1, mlp_depth):
                modules.append(nn.GELU())
                modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
            modules = nn.Sequential(*modules)

        elif cfg.projector_type == "downsample_mlp_gelu":
            mlp_depth = cfg.depth
            mlp_ratio = cfg.mlp_ratio
            modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
            for _ in range(1, mlp_depth - 1):
                modules.append(nn.GELU())
                modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
            modules.append(nn.GELU())
            modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
            modules = nn.Sequential(*modules)

        else:
            raise ValueError(f"Unknown projector type: {cfg.projector_type}")

        if cfg.token_pooling:
            self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)

        self.layers = modules

    def forward(self, x):
        if self.cfg.token_pooling:
            batch_size, wxh, channels = x.shape
            w = h = int(wxh ** 0.5)
            x = x.view(batch_size, w, h, channels)
            x = x.permute(0, 3, 1, 2)
            # import ipdb; ipdb.set_trace()
            patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
            batch_size, channels, h_patches, w_patches, _, _ = patches.size()
            # 在通道维度上拼接
            patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)

            # 通过线性层
            patches = patches.permute(0, 2, 1, 3).contiguous()
            patches = patches.view(batch_size, h_patches * w_patches, channels * 4)

            x = self.token_pooling_layer(patches)

        elif self.cfg.projector_type == 'downsample_mlp_gelu':
            bs, hw, input_dim = x.shape
            h = w = int((hw) ** 0.5)

            """compute padding"""
            if h % self.cfg.downsample_ratio:
                pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
            else:
                pad = 0
            x = x.reshape(bs, h, w, input_dim)
            if pad > 0:
                x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)

            """4 to 1 concat"""
            x = x.permute(0, 3, 1, 2)  # B, C, H, W
            x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio,
                         padding=0)  # B, C*4, HW // 4
            x = x.permute(0, 2, 1)

        return self.layers(x)


class VisionEncoderConfig(PretrainedConfig):
    model_type: str = "vision"

    model_name: str = "siglip_large_patch16_384"
    image_size: int = 384
    patch_size: int = 16
    width: int = 1024
    layers: int = 24
    heads: int = 16
    mlp_ratio: int = 4
    global_pool: str = "map"
    ignore_head: bool = True
    class_token: bool = False
    num_classes: int = 0
    use_checkpoint: bool = False
    weight_init: str = "skip"
    deterministic: bool = False
    num_recomputing_layers: int = 0

    def __init__(
            self,
            model_name: str = "siglip_large_patch16_384",
            image_size: int = 384,
            patch_size: int = 16,
            width: int = 1024,
            layers: int = 24,
            heads: int = 16,
            mlp_ratio: int = 4,
            global_pool: str = "map",
            ignore_head: bool = True,
            class_token: bool = False,
            num_classes: int = 0,
            use_checkpoint: bool = False,
            **kwargs
    ):
        self.model_name = model_name
        self.image_size = image_size
        self.patch_size = patch_size
        self.width = width
        self.layers = layers
        self.heads = heads
        self.mlp_ratio = mlp_ratio
        self.global_pool = global_pool
        self.ignore_head = ignore_head
        self.class_token = class_token
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint

        super().__init__(**kwargs)


class MlpProjectorConfig(PretrainedConfig):
    model_type = "mlp_projector"
    projector_type: str = "downsample_mlp_gelu"
    input_dim: int = 1152
    n_embed: int = 2048
    depth: int = 2
    mlp_ratio: int = 1
    downsample_ratio: int = 2
    token_pooling: bool = False

    def __init__(
            self,
            projector_type: str = "downsample_mlp_gelu",
            input_dim: int = 1152,
            n_embed: int = 2048,
            depth: int = 2,
            mlp_ratio: int = 1,
            downsample_ratio: int = 2,
            **kwargs
    ):
        self.projector_type = projector_type
        self.input_dim = input_dim
        self.n_embed = n_embed
        self.depth = depth
        self.mlp_ratio = mlp_ratio
        self.downsample_ratio = downsample_ratio

        super().__init__(**kwargs)


@dataclass
class DeepSeekVLV2CausalLMOutputWithPast(ModelOutput):
    """
    Base class for DeepSeek-VL2 causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
            The rope index difference between sequence length and multimodal rope.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    rope_deltas: Optional[torch.LongTensor] = None


class DeepseekVLV2Config(PretrainedConfig):
    model_type = "deepseek_vl_v2"
    vision_config: VisionEncoderConfig
    projector_config: MlpProjectorConfig
    language_config: DeepseekV2Config

    tile_tag: str = "2D"
    global_view_pos: str = "head"
    candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384),)

    def __init__(
            self,
            tile_tag: str = "tile_tag",
            global_view_pos: str = "head",
            candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384),),
            **kwargs
    ):
        super().__init__(**kwargs)

        vision_config = kwargs.get("vision_config", {})
        self.vision_config = VisionEncoderConfig(**vision_config)

        projector_config = kwargs.get("projector_config", {})
        self.projector_config = MlpProjectorConfig(**projector_config)

        language_config = kwargs.get("language_config", {})
        if isinstance(language_config, DeepseekV2Config):
            self.language_config = language_config
        else:
            self.language_config = DeepseekV2Config(**language_config)

        self.tile_tag = tile_tag
        self.global_view_pos = global_view_pos
        self.candidate_resolutions = candidate_resolutions


class DeepseekVLV2PreTrainedModel(PreTrainedModel):
    config_class = DeepseekVLV2Config
    base_model_prefix = "deepseek_vl_v2"
    _no_split_modules = []
    _skip_keys_device_placement = "past_key_values"


class DeepseekVLV2ForCausalLM(DeepseekVLV2PreTrainedModel):

    def __init__(self, config: DeepseekVLV2Config):
        super().__init__(config)

        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"

        # ----------- vision encoder ------------
        vision_config = config.vision_config
        self.vision = VisionTransformer(
            img_size=vision_config.image_size,
            patch_size=vision_config.patch_size,
            embed_dim=vision_config.width,
            depth=vision_config.layers,
            num_heads=vision_config.heads,
            mlp_ratio=vision_config.mlp_ratio,
            class_token=vision_config.class_token,
            global_pool=vision_config.global_pool,
            ignore_head=vision_config.ignore_head,
            weight_init=vision_config.weight_init,
            num_classes=0,
            deterministic=vision_config.deterministic,
            num_recomputing_layers=vision_config.num_recomputing_layers
        )

        # ----------- vl projector ------------
        projector_config = config.projector_config
        self.projector = MlpProjector(projector_config)

        # image token format 形式
        # FIXME 目前tile tag & global_view_pos的默认取值都是之前的实验策略;后续应当去掉默认取值,改为没有取值就raise error
        self.tile_tag = config.tile_tag
        self.global_view_pos = config.global_view_pos

        # 用于format image token sequence的特殊token
        embed_std = 1 / torch.sqrt(torch.tensor(projector_config.n_embed, dtype=torch.float32))
        if self.tile_tag == "2D":
            # <|view_separator|>, <|\n|>
            self.image_newline = nn.Parameter(torch.randn(projector_config.n_embed) * embed_std)
            # fix the typo: view_seperater
            self.view_seperator = nn.Parameter(torch.randn(projector_config.n_embed) * embed_std)
        elif self.tile_tag == "1D":
            # <|tile_x|>, <|tile_global|>
            candidate_resolutions = config.candidate_resolutions
            if len(candidate_resolutions) == 0:
                raise ValueError(
                    f"len(candidate_resolutions) should be larger than 0, but got {len(candidate_resolutions)}")
            tile_variants_num = len(candidate_resolutions)
            self.tile_indicators = nn.Parameter(
                torch.randn(size=(tile_variants_num + 1, config.aligner.params.n_embed)) * embed_std
            )
        else:
            raise ValueError(f"tile tag should be either 1D or 2D, but got {self.tile_tag}")

        # ----------- language model ------------
        language_config = config.language_config
        self.language = DeepseekV2ForCausalLM(language_config)

    def prepare_inputs_embeds(
            self,
            input_ids: torch.LongTensor,
            images: Optional[torch.FloatTensor] = None,
            images_seq_mask: Optional[torch.LongTensor] = None,
            images_spatial_crop: Optional[torch.LongTensor] = None,
            **ignore_kwargs
    ):
        """

        Args:
            input_ids (torch.LongTensor): [b, T]
            images (torch.FloatTensor): [b, max_n_images, 3, height, width]
            images_seq_mask (torch.BoolTensor): [b, T]
            images_spatial_crop (torch.LongTensor): [b, max_n_images, 2]

        Returns:
            input_embeds (torch.Tensor): [b, T, D]
        """

        if images is None or images_spatial_crop.sum() == 0:
            return self.language.get_input_embeddings()(input_ids)

        bs, max_n_images, _ = images_spatial_crop.shape
        batch_num_tiles = [0 for _ in range(bs)]
        total_tiles = []
        for idx in range(bs):
            for jdx in range(max_n_images):
                num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
                if num_width_tiles == 0 or num_height_tiles == 0:
                    break
                batch_num_tiles[idx] += (1 + num_width_tiles * num_height_tiles)

            total_tiles.append(images[idx, :batch_num_tiles[idx]])

        # [batch_all_tiles, 3, height, width]
        total_tiles = torch.cat(total_tiles, dim=0)
        assert total_tiles.shape[0] == sum(batch_num_tiles)
        if total_tiles.shape[0] == 0:
            return self.language.get_input_embeddings()(input_ids)

        # [batch_all_tiles, vit_seq_len, c]
        images_feature = self.vision(total_tiles)

        # [batch_all_tiles, hw, D]
        images_embeds = self.projector(images_feature)
        _, hw, n_dim = images_embeds.shape
        h = w = int(hw ** 0.5)

        # put image tokens into the input_embeds, [b, T, D]
        input_embeds = self.language.get_input_embeddings()(input_ids)

        # 根据self.tile_tag & self.global_view_pos填充image token sequence
        tile_index = 0
        for idx in range(images_spatial_crop.shape[0]):
            images_in_this_batch = []
            for jdx in range(images_spatial_crop.shape[1]):

                # extra global & local features
                num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
                if num_width_tiles == 0 or num_height_tiles == 0:
                    break

                num_tiles_in_image = num_width_tiles * num_height_tiles

                # [hw, D]
                global_features = images_embeds[tile_index]

                # [num_height_tiles * num_width_tiles, hw, D]
                local_features = images_embeds[tile_index + 1: tile_index + 1 + num_tiles_in_image]

                tile_index += num_tiles_in_image + 1

                # format global and local features
                if self.tile_tag == "2D":

                    # ----------------- global view add newline -----------------
                    # [hw, D] -> [h, w, D]
                    global_features = global_features.view(h, w, n_dim)
                    # [D]     -> [h, 1, D]
                    new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h)
                    # cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
                    global_features = torch.cat([global_features, new_lines_in_global], dim=1)
                    # [h, w + 1, D] -> [h * (w + 1), D]
                    global_features = global_features.view(-1, n_dim)

                    # ----------------- local view add newline -----------------
                    # [num_height_tiles * num_width_tiles, h * w, D] -> [num_height_tiles * h, num_width_tiles * w, D]
                    local_features = rearrange(
                        local_features,
                        "(th tw) (h w) d -> (th h) (tw w) d",
                        th=num_height_tiles,
                        tw=num_width_tiles,
                        h=h,
                        w=w
                    )

                    # [D] -> [num_height_tiles * h, 1, D]
                    new_lines_in_local = repeat(
                        self.image_newline,
                        "d -> (th h) 1 d",
                        th=num_height_tiles,
                        h=h
                    )

                    # [num_height_tiles * h, num_width_tiles * w + 1, D]
                    local_features = torch.cat([local_features, new_lines_in_local], dim=1)

                    # [num_height_tiles * h, num_width_tiles * w + 1, D]
                    #   --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
                    local_features = local_features.view(-1, n_dim)

                    # ----------------- merge global and local tiles -----------------
                    if self.global_view_pos == "head":
                        global_local_features = torch.cat(
                            [global_features, self.view_seperator[None, :], local_features], dim=0)
                    else:
                        global_local_features = torch.cat(
                            [local_features, self.view_seperator[None, :], global_features], dim=0)

                else:
                    # abandoned,实际上不会走这个逻辑
                    global_features = torch.cat(
                        [self.tile_indicators[0:1], global_features], dim=0
                    )
                    local_features = torch.cat(
                        [self.tile_indicators[1:num_tiles_in_image + 1].unsqueeze(1), local_features], dim=1
                    )
                    local_features = rearrange(local_features, 'crop_num hw d -> (crop_num hw) d')

                    if self.global_view_pos == "head":
                        global_local_features = torch.cat([global_features, local_features], dim=0)
                    else:
                        global_local_features = torch.cat([local_features, global_features], dim=0)

                images_in_this_batch.append(global_local_features)

            if len(images_in_this_batch) > 0:
                images_in_this_batch = torch.cat(images_in_this_batch, dim=0)
                input_embeds[idx].masked_scatter_(images_seq_mask[idx].unsqueeze(-1), images_in_this_batch)

        return input_embeds

    @torch.no_grad()
    def incremental_prefilling(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,

            images: Optional[torch.FloatTensor] = None,
            images_seq_mask: Optional[torch.LongTensor] = None,
            images_spatial_crop: Optional[torch.LongTensor] = None,
            chunk_size: int = 1024
    ):
        if inputs_embeds is None:
            inputs_embeds = self.prepare_inputs_embeds(
                input_ids=input_ids,
                images=images,
                images_seq_mask=images_seq_mask,
                images_spatial_crop=images_spatial_crop,
            )

            del images
            del images_seq_mask
            del images_spatial_crop

            if attention_mask is not None:
                attention_mask = attention_mask.to(inputs_embeds.device)

            self._clear_cuda_cache()

        bzs, seq_len, _ = inputs_embeds.shape
        past_key_values = None

        # remain the last token for the next forward
        prefilling_len = seq_len - 1
        for i in range(0, prefilling_len, chunk_size):
            chunk_start = i
            chunk_end = min(i + chunk_size, prefilling_len)
            chunk_inputs_embeds = inputs_embeds[:, chunk_start: chunk_end]
            chunk_attention_mask = attention_mask[:, 0: chunk_end]
            # print(f"start = {chunk_start}, end = {chunk_end}, prefilling_len = {prefilling_len}, seq_len = {seq_len}")

            # compute position_ids
            if past_key_values is not None:
                position_ids = torch.arange(
                    chunk_start,
                    chunk_end,
                    dtype=torch.long,
                    device=inputs_embeds.device
                ).unsqueeze(0)
                past_key_values = self._move_past_key_values_to_gpu(past_key_values, inputs_embeds.device)
            else:
                position_ids = None

            # chunk-forward
            with torch.no_grad():
                outputs = self.forward(
                    inputs_embeds=chunk_inputs_embeds,
                    attention_mask=chunk_attention_mask,
                    past_key_values=past_key_values,
                    position_ids=position_ids,
                    use_cache=True,
                )
                # update past_key_values
                past_key_values = outputs.past_key_values
                past_key_values = self._move_past_key_values_to_cpu(past_key_values)

                del outputs, position_ids
                self._clear_cuda_cache()

        prefilling_key_values = []
        for layer_past in past_key_values:
            prefilling_key_values.append(
                (
                    layer_past[0][:, :, 0: prefilling_len, ...].to(inputs_embeds.device),
                    layer_past[1][:, :, 0: prefilling_len, ...].to(inputs_embeds.device),
                )
            )

        return inputs_embeds, prefilling_key_values

    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,

            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,

            images: Optional[torch.FloatTensor] = None,
            images_seq_mask: Optional[torch.LongTensor] = None,
            images_spatial_crop: Optional[torch.LongTensor] = None,

            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            cache_position: Optional[torch.LongTensor] = None,
    ):

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        if inputs_embeds is None:
            inputs_embeds = self.prepare_inputs_embeds(
                input_ids=input_ids,
                images=images,
                images_seq_mask=images_seq_mask,
                images_spatial_crop=images_spatial_crop,
            )

            if attention_mask is not None:
                attention_mask = attention_mask.to(inputs_embeds.device)

        # print(inputs_embeds.shape)
        outputs = self.language.forward(
            input_ids=None,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position
        )

        return outputs

    def _clear_cuda_cache(self):
        """clear CUDA memory cache"""
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()

    def _move_past_key_values_to_cpu(self, past_key_values):
        # print(f"past_key_values -> cpu")
        if past_key_values is None:
            return None
        return tuple(tuple(t.cpu() for t in layer) for layer in past_key_values)

    def _move_past_key_values_to_gpu(self, past_key_values, device="cuda:0"):
        # print(f"past_key_values -> gpu")
        if past_key_values is None:
            return None
        return tuple(tuple(t.to(device) for t in layer) for layer in past_key_values)

    def prepare_inputs_for_generation(
            self,
            input_ids,
            past_key_values=None,
            inputs_embeds=None,

            images: Optional[torch.FloatTensor] = None,
            images_seq_mask: Optional[torch.LongTensor] = None,
            images_spatial_crop: Optional[torch.LongTensor] = None,

            attention_mask=None,
            cache_position=None,

            pixel_values=None,
            image_sizes=None,
            num_logits_to_keep=None,
            **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
        model_inputs = self.language.prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
            **kwargs,
        )

        # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
        # Otherwise we need pixel values to be passed to model
        cache_position = model_inputs["cache_position"]
        if cache_position[0] == 0:
            model_inputs["images"] = images
            model_inputs["images_seq_mask"] = images_seq_mask
            model_inputs["images_spatial_crop"] = images_spatial_crop

        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx.to(past_state.device))
                    for past_state in layer_past
                ),
            )
        return reordered_past


AutoConfig.register("vision", VisionEncoderConfig)
AutoConfig.register("mlp_projector", MlpProjectorConfig)
AutoConfig.register("deepseek_vl_v2", DeepseekVLV2Config)
AutoModelForCausalLM.register(DeepseekVLV2Config, DeepseekVLV2ForCausalLM)