File size: 27,473 Bytes
edced0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
from attrdict import AttrDict
from dataclasses import dataclass
import logging
import gc
from einops import rearrange, repeat
from typing import Optional, List, Tuple, Callable, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
)
from transformers.modeling_outputs import ModelOutput
from transformers.configuration_utils import PretrainedConfig
from transformers import (
AutoConfig,
AutoModelForCausalLM,
PreTrainedModel
)
from transformers.utils import logging
from .siglip_vit import VisionTransformer
from .configuration_deepseek import DeepseekV2Config
from .modeling_deepseek import DeepseekV2ForCausalLM
logger = logging.get_logger(__name__)
class MlpProjector(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
if cfg.projector_type == "identity":
modules = nn.Identity()
elif cfg.projector_type == "linear":
modules = nn.Linear(cfg.input_dim, cfg.n_embed)
elif cfg.projector_type == "mlp_gelu":
mlp_depth = cfg.depth
modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
modules = nn.Sequential(*modules)
elif cfg.projector_type == "downsample_mlp_gelu":
mlp_depth = cfg.depth
mlp_ratio = cfg.mlp_ratio
modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
for _ in range(1, mlp_depth - 1):
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
modules = nn.Sequential(*modules)
else:
raise ValueError(f"Unknown projector type: {cfg.projector_type}")
if cfg.token_pooling:
self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)
self.layers = modules
def forward(self, x):
if self.cfg.token_pooling:
batch_size, wxh, channels = x.shape
w = h = int(wxh ** 0.5)
x = x.view(batch_size, w, h, channels)
x = x.permute(0, 3, 1, 2)
# import ipdb; ipdb.set_trace()
patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
batch_size, channels, h_patches, w_patches, _, _ = patches.size()
# 在通道维度上拼接
patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)
# 通过线性层
patches = patches.permute(0, 2, 1, 3).contiguous()
patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
x = self.token_pooling_layer(patches)
elif self.cfg.projector_type == 'downsample_mlp_gelu':
bs, hw, input_dim = x.shape
h = w = int((hw) ** 0.5)
"""compute padding"""
if h % self.cfg.downsample_ratio:
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
else:
pad = 0
x = x.reshape(bs, h, w, input_dim)
if pad > 0:
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
"""4 to 1 concat"""
x = x.permute(0, 3, 1, 2) # B, C, H, W
x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio,
padding=0) # B, C*4, HW // 4
x = x.permute(0, 2, 1)
return self.layers(x)
class VisionEncoderConfig(PretrainedConfig):
model_type: str = "vision"
model_name: str = "siglip_large_patch16_384"
image_size: int = 384
patch_size: int = 16
width: int = 1024
layers: int = 24
heads: int = 16
mlp_ratio: int = 4
global_pool: str = "map"
ignore_head: bool = True
class_token: bool = False
num_classes: int = 0
use_checkpoint: bool = False
weight_init: str = "skip"
deterministic: bool = False
num_recomputing_layers: int = 0
def __init__(
self,
model_name: str = "siglip_large_patch16_384",
image_size: int = 384,
patch_size: int = 16,
width: int = 1024,
layers: int = 24,
heads: int = 16,
mlp_ratio: int = 4,
global_pool: str = "map",
ignore_head: bool = True,
class_token: bool = False,
num_classes: int = 0,
use_checkpoint: bool = False,
**kwargs
):
self.model_name = model_name
self.image_size = image_size
self.patch_size = patch_size
self.width = width
self.layers = layers
self.heads = heads
self.mlp_ratio = mlp_ratio
self.global_pool = global_pool
self.ignore_head = ignore_head
self.class_token = class_token
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
super().__init__(**kwargs)
class MlpProjectorConfig(PretrainedConfig):
model_type = "mlp_projector"
projector_type: str = "downsample_mlp_gelu"
input_dim: int = 1152
n_embed: int = 2048
depth: int = 2
mlp_ratio: int = 1
downsample_ratio: int = 2
token_pooling: bool = False
def __init__(
self,
projector_type: str = "downsample_mlp_gelu",
input_dim: int = 1152,
n_embed: int = 2048,
depth: int = 2,
mlp_ratio: int = 1,
downsample_ratio: int = 2,
**kwargs
):
self.projector_type = projector_type
self.input_dim = input_dim
self.n_embed = n_embed
self.depth = depth
self.mlp_ratio = mlp_ratio
self.downsample_ratio = downsample_ratio
super().__init__(**kwargs)
@dataclass
class DeepSeekVLV2CausalLMOutputWithPast(ModelOutput):
"""
Base class for DeepSeek-VL2 causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
The rope index difference between sequence length and multimodal rope.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
rope_deltas: Optional[torch.LongTensor] = None
class DeepseekVLV2Config(PretrainedConfig):
model_type = "deepseek_vl_v2"
vision_config: VisionEncoderConfig
projector_config: MlpProjectorConfig
language_config: DeepseekV2Config
tile_tag: str = "2D"
global_view_pos: str = "head"
candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384),)
def __init__(
self,
tile_tag: str = "tile_tag",
global_view_pos: str = "head",
candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384),),
**kwargs
):
super().__init__(**kwargs)
vision_config = kwargs.get("vision_config", {})
self.vision_config = VisionEncoderConfig(**vision_config)
projector_config = kwargs.get("projector_config", {})
self.projector_config = MlpProjectorConfig(**projector_config)
language_config = kwargs.get("language_config", {})
if isinstance(language_config, DeepseekV2Config):
self.language_config = language_config
else:
self.language_config = DeepseekV2Config(**language_config)
self.tile_tag = tile_tag
self.global_view_pos = global_view_pos
self.candidate_resolutions = candidate_resolutions
class DeepseekVLV2PreTrainedModel(PreTrainedModel):
config_class = DeepseekVLV2Config
base_model_prefix = "deepseek_vl_v2"
_no_split_modules = []
_skip_keys_device_placement = "past_key_values"
class DeepseekVLV2ForCausalLM(DeepseekVLV2PreTrainedModel):
def __init__(self, config: DeepseekVLV2Config):
super().__init__(config)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
# ----------- vision encoder ------------
vision_config = config.vision_config
self.vision = VisionTransformer(
img_size=vision_config.image_size,
patch_size=vision_config.patch_size,
embed_dim=vision_config.width,
depth=vision_config.layers,
num_heads=vision_config.heads,
mlp_ratio=vision_config.mlp_ratio,
class_token=vision_config.class_token,
global_pool=vision_config.global_pool,
ignore_head=vision_config.ignore_head,
weight_init=vision_config.weight_init,
num_classes=0,
deterministic=vision_config.deterministic,
num_recomputing_layers=vision_config.num_recomputing_layers
)
# ----------- vl projector ------------
projector_config = config.projector_config
self.projector = MlpProjector(projector_config)
# image token format 形式
# FIXME 目前tile tag & global_view_pos的默认取值都是之前的实验策略;后续应当去掉默认取值,改为没有取值就raise error
self.tile_tag = config.tile_tag
self.global_view_pos = config.global_view_pos
# 用于format image token sequence的特殊token
embed_std = 1 / torch.sqrt(torch.tensor(projector_config.n_embed, dtype=torch.float32))
if self.tile_tag == "2D":
# <|view_separator|>, <|\n|>
self.image_newline = nn.Parameter(torch.randn(projector_config.n_embed) * embed_std)
# fix the typo: view_seperater
self.view_seperator = nn.Parameter(torch.randn(projector_config.n_embed) * embed_std)
elif self.tile_tag == "1D":
# <|tile_x|>, <|tile_global|>
candidate_resolutions = config.candidate_resolutions
if len(candidate_resolutions) == 0:
raise ValueError(
f"len(candidate_resolutions) should be larger than 0, but got {len(candidate_resolutions)}")
tile_variants_num = len(candidate_resolutions)
self.tile_indicators = nn.Parameter(
torch.randn(size=(tile_variants_num + 1, config.aligner.params.n_embed)) * embed_std
)
else:
raise ValueError(f"tile tag should be either 1D or 2D, but got {self.tile_tag}")
# ----------- language model ------------
language_config = config.language_config
self.language = DeepseekV2ForCausalLM(language_config)
def prepare_inputs_embeds(
self,
input_ids: torch.LongTensor,
images: Optional[torch.FloatTensor] = None,
images_seq_mask: Optional[torch.LongTensor] = None,
images_spatial_crop: Optional[torch.LongTensor] = None,
**ignore_kwargs
):
"""
Args:
input_ids (torch.LongTensor): [b, T]
images (torch.FloatTensor): [b, max_n_images, 3, height, width]
images_seq_mask (torch.BoolTensor): [b, T]
images_spatial_crop (torch.LongTensor): [b, max_n_images, 2]
Returns:
input_embeds (torch.Tensor): [b, T, D]
"""
if images is None or images_spatial_crop.sum() == 0:
return self.language.get_input_embeddings()(input_ids)
bs, max_n_images, _ = images_spatial_crop.shape
batch_num_tiles = [0 for _ in range(bs)]
total_tiles = []
for idx in range(bs):
for jdx in range(max_n_images):
num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
if num_width_tiles == 0 or num_height_tiles == 0:
break
batch_num_tiles[idx] += (1 + num_width_tiles * num_height_tiles)
total_tiles.append(images[idx, :batch_num_tiles[idx]])
# [batch_all_tiles, 3, height, width]
total_tiles = torch.cat(total_tiles, dim=0)
assert total_tiles.shape[0] == sum(batch_num_tiles)
if total_tiles.shape[0] == 0:
return self.language.get_input_embeddings()(input_ids)
# [batch_all_tiles, vit_seq_len, c]
images_feature = self.vision(total_tiles)
# [batch_all_tiles, hw, D]
images_embeds = self.projector(images_feature)
_, hw, n_dim = images_embeds.shape
h = w = int(hw ** 0.5)
# put image tokens into the input_embeds, [b, T, D]
input_embeds = self.language.get_input_embeddings()(input_ids)
# 根据self.tile_tag & self.global_view_pos填充image token sequence
tile_index = 0
for idx in range(images_spatial_crop.shape[0]):
images_in_this_batch = []
for jdx in range(images_spatial_crop.shape[1]):
# extra global & local features
num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
if num_width_tiles == 0 or num_height_tiles == 0:
break
num_tiles_in_image = num_width_tiles * num_height_tiles
# [hw, D]
global_features = images_embeds[tile_index]
# [num_height_tiles * num_width_tiles, hw, D]
local_features = images_embeds[tile_index + 1: tile_index + 1 + num_tiles_in_image]
tile_index += num_tiles_in_image + 1
# format global and local features
if self.tile_tag == "2D":
# ----------------- global view add newline -----------------
# [hw, D] -> [h, w, D]
global_features = global_features.view(h, w, n_dim)
# [D] -> [h, 1, D]
new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h)
# cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
global_features = torch.cat([global_features, new_lines_in_global], dim=1)
# [h, w + 1, D] -> [h * (w + 1), D]
global_features = global_features.view(-1, n_dim)
# ----------------- local view add newline -----------------
# [num_height_tiles * num_width_tiles, h * w, D] -> [num_height_tiles * h, num_width_tiles * w, D]
local_features = rearrange(
local_features,
"(th tw) (h w) d -> (th h) (tw w) d",
th=num_height_tiles,
tw=num_width_tiles,
h=h,
w=w
)
# [D] -> [num_height_tiles * h, 1, D]
new_lines_in_local = repeat(
self.image_newline,
"d -> (th h) 1 d",
th=num_height_tiles,
h=h
)
# [num_height_tiles * h, num_width_tiles * w + 1, D]
local_features = torch.cat([local_features, new_lines_in_local], dim=1)
# [num_height_tiles * h, num_width_tiles * w + 1, D]
# --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
local_features = local_features.view(-1, n_dim)
# ----------------- merge global and local tiles -----------------
if self.global_view_pos == "head":
global_local_features = torch.cat(
[global_features, self.view_seperator[None, :], local_features], dim=0)
else:
global_local_features = torch.cat(
[local_features, self.view_seperator[None, :], global_features], dim=0)
else:
# abandoned,实际上不会走这个逻辑
global_features = torch.cat(
[self.tile_indicators[0:1], global_features], dim=0
)
local_features = torch.cat(
[self.tile_indicators[1:num_tiles_in_image + 1].unsqueeze(1), local_features], dim=1
)
local_features = rearrange(local_features, 'crop_num hw d -> (crop_num hw) d')
if self.global_view_pos == "head":
global_local_features = torch.cat([global_features, local_features], dim=0)
else:
global_local_features = torch.cat([local_features, global_features], dim=0)
images_in_this_batch.append(global_local_features)
if len(images_in_this_batch) > 0:
images_in_this_batch = torch.cat(images_in_this_batch, dim=0)
input_embeds[idx].masked_scatter_(images_seq_mask[idx].unsqueeze(-1), images_in_this_batch)
return input_embeds
@torch.no_grad()
def incremental_prefilling(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
images: Optional[torch.FloatTensor] = None,
images_seq_mask: Optional[torch.LongTensor] = None,
images_spatial_crop: Optional[torch.LongTensor] = None,
chunk_size: int = 1024
):
if inputs_embeds is None:
inputs_embeds = self.prepare_inputs_embeds(
input_ids=input_ids,
images=images,
images_seq_mask=images_seq_mask,
images_spatial_crop=images_spatial_crop,
)
del images
del images_seq_mask
del images_spatial_crop
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
self._clear_cuda_cache()
bzs, seq_len, _ = inputs_embeds.shape
past_key_values = None
# remain the last token for the next forward
prefilling_len = seq_len - 1
for i in range(0, prefilling_len, chunk_size):
chunk_start = i
chunk_end = min(i + chunk_size, prefilling_len)
chunk_inputs_embeds = inputs_embeds[:, chunk_start: chunk_end]
chunk_attention_mask = attention_mask[:, 0: chunk_end]
# print(f"start = {chunk_start}, end = {chunk_end}, prefilling_len = {prefilling_len}, seq_len = {seq_len}")
# compute position_ids
if past_key_values is not None:
position_ids = torch.arange(
chunk_start,
chunk_end,
dtype=torch.long,
device=inputs_embeds.device
).unsqueeze(0)
past_key_values = self._move_past_key_values_to_gpu(past_key_values, inputs_embeds.device)
else:
position_ids = None
# chunk-forward
with torch.no_grad():
outputs = self.forward(
inputs_embeds=chunk_inputs_embeds,
attention_mask=chunk_attention_mask,
past_key_values=past_key_values,
position_ids=position_ids,
use_cache=True,
)
# update past_key_values
past_key_values = outputs.past_key_values
past_key_values = self._move_past_key_values_to_cpu(past_key_values)
del outputs, position_ids
self._clear_cuda_cache()
prefilling_key_values = []
for layer_past in past_key_values:
prefilling_key_values.append(
(
layer_past[0][:, :, 0: prefilling_len, ...].to(inputs_embeds.device),
layer_past[1][:, :, 0: prefilling_len, ...].to(inputs_embeds.device),
)
)
return inputs_embeds, prefilling_key_values
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
images: Optional[torch.FloatTensor] = None,
images_seq_mask: Optional[torch.LongTensor] = None,
images_spatial_crop: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if inputs_embeds is None:
inputs_embeds = self.prepare_inputs_embeds(
input_ids=input_ids,
images=images,
images_seq_mask=images_seq_mask,
images_spatial_crop=images_spatial_crop,
)
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
# print(inputs_embeds.shape)
outputs = self.language.forward(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position
)
return outputs
def _clear_cuda_cache(self):
"""clear CUDA memory cache"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def _move_past_key_values_to_cpu(self, past_key_values):
# print(f"past_key_values -> cpu")
if past_key_values is None:
return None
return tuple(tuple(t.cpu() for t in layer) for layer in past_key_values)
def _move_past_key_values_to_gpu(self, past_key_values, device="cuda:0"):
# print(f"past_key_values -> gpu")
if past_key_values is None:
return None
return tuple(tuple(t.to(device) for t in layer) for layer in past_key_values)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
images: Optional[torch.FloatTensor] = None,
images_seq_mask: Optional[torch.LongTensor] = None,
images_spatial_crop: Optional[torch.LongTensor] = None,
attention_mask=None,
cache_position=None,
pixel_values=None,
image_sizes=None,
num_logits_to_keep=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = self.language.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
num_logits_to_keep=num_logits_to_keep,
**kwargs,
)
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
cache_position = model_inputs["cache_position"]
if cache_position[0] == 0:
model_inputs["images"] = images
model_inputs["images_seq_mask"] = images_seq_mask
model_inputs["images_spatial_crop"] = images_spatial_crop
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
),
)
return reordered_past
AutoConfig.register("vision", VisionEncoderConfig)
AutoConfig.register("mlp_projector", MlpProjectorConfig)
AutoConfig.register("deepseek_vl_v2", DeepseekVLV2Config)
AutoModelForCausalLM.register(DeepseekVLV2Config, DeepseekVLV2ForCausalLM)
|