File size: 7,221 Bytes
720b03b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import logging
import math
import os
import shutil
import time
from datasets import load_dataset
import gradio as gr
import moviepy.editor as mp
import numpy as np
import pysrt
import torch
from transformers import pipeline
import yt_dlp
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', force=True)
LOG = logging.getLogger(__name__)
CLIP_SECONDS = 20
SLICES = 4
SLICE_DURATION = CLIP_SECONDS / SLICES
# At most 6 mins
MAX_CHUNKS = 45
BASEDIR = '/tmp/processed'
os.makedirs(BASEDIR, exist_ok=True)
asr_kwargs = {
"task": "automatic-speech-recognition",
"model": "openai/whisper-medium.en"
}
translator_kwargs = {
"task": "translation_en_to_fr",
"model": "Helsinki-NLP/opus-mt-en-fr"
}
summarizer_kwargs = {
"task": "summarization",
"model": "facebook/bart-large-cnn"
}
if torch.cuda.is_available():
LOG.info("GPU available")
asr_kwargs['device'] = 'cuda:0'
translator_kwargs['device'] = 'cuda:0'
summarizer_kwargs['device'] = 'cuda:0'
# All three models should fit together on a single T4 GPU
LOG.info("Fetching ASR model from the Hub if not already there")
asr = pipeline(**asr_kwargs)
LOG.info("Fetching translation model from the Hub if not already there")
translator = pipeline(**translator_kwargs)
LOG.info("Fetching summarization model from the Hub if not already there")
summarizer = pipeline(**summarizer_kwargs)
def demo(url: str, translate: bool):
basedir = BASEDIR
video_path, video = download(url, os.path.join(basedir, 'video.mp4'))
audio_clips(video, basedir)
srt_file, summary = process_video(basedir, video.duration, translate)
return summary, srt_file, [video_path, srt_file]
def download(url, dst):
LOG.info("Downloading provided url %s", url)
opts = {
'skip_download': False,
'overwrites': True,
'format': 'mp4',
'outtmpl': {'default': dst}
}
with yt_dlp.YoutubeDL(opts) as dl:
dl.download([url])
return dst, mp.VideoFileClip(dst)
def audiodir(basedir):
return os.path.join(basedir, 'audio')
def audio_clips(video: mp.VideoFileClip, basedir: str):
LOG.info("Building audio clips")
clips_dir = audiodir(basedir)
shutil.rmtree(clips_dir, ignore_errors=True)
os.makedirs(clips_dir, exist_ok=True)
audio = video.audio
end = audio.duration
digits = int(math.log(end / CLIP_SECONDS, 10)) + 1
for idx, i in enumerate(range(0, int(end), CLIP_SECONDS)):
sub_end = min(i+CLIP_SECONDS, end)
# print(sub_end)
sub_clip = audio.subclip(t_start=i, t_end=sub_end)
audio_file = os.path.join(clips_dir, f"audio_{idx:0{digits}d}" + ".ogg")
# audio_file = os.path.join(AUDIO_CLIPS, "audio_" + str(idx))
sub_clip.write_audiofile(audio_file, fps=16000)
def process_video(basedir: str, duration, translate: bool):
audio_dir = audiodir(basedir)
transcriptions = transcription(audio_dir, duration)
subs = translation(transcriptions, translate)
srt_file = build_srt_clips(subs, basedir)
summary = summarize(transcriptions, translate)
return srt_file, summary
def transcription(audio_dir: str, duration):
LOG.info("Audio transcription")
# Not exact, nvm, doesn't need to be
chunks = int(duration / CLIP_SECONDS + 1)
chunks = min(chunks, MAX_CHUNKS)
LOG.debug("Loading audio clips dataset")
dataset = load_dataset("audiofolder", data_dir=audio_dir)
dataset = dataset['train']
dataset = dataset['audio'][0:chunks]
start = time.time()
transcriptions = []
for i, d in enumerate(np.array_split(dataset, 5)):
d = list(d)
LOG.info("ASR batch %d / 5, samples %d", i, len(d))
t = asr(d, max_new_tokens=10000)
transcriptions.extend(t)
transcriptions = [t['text'] for t in transcriptions]
elapsed = time.time() - start
LOG.info("Transcription done, elapsed %.2f seconds", elapsed)
return transcriptions
def translation(transcriptions, translate):
if translate:
LOG.info("Performing translation")
start = time.time()
translations = translator(transcriptions)
translations = [t['translation_text'] for t in translations]
elapsed = time.time() - start
LOG.info("Translation done, elapsed %.2f seconds", elapsed)
else:
translations = transcriptions
return translations
def summarize(transcriptions, translate):
LOG.info("Generating video summary")
whole_text = ' '.join(transcriptions).strip()
word_count = len(whole_text.split())
summary = summarizer(whole_text)
# min_length=word_count // 4 + 1,
# max_length=word_count // 2 + 1)
summary = translation([summary[0]['summary_text']], translate)[0]
return summary
def subs_to_timed_segments(subtitles: list[str]):
LOG.info("Building srt segments")
all_chunks = []
for sub in subtitles:
chunks = np.array_split(sub.split(' '), SLICES)
all_chunks.extend(chunks)
subs = []
for c in all_chunks:
c = ' '.join(c)
subs.append(c)
segments = []
for i, c in enumerate(subs):
segments.append({
'text': c.strip(),
'start': i * SLICE_DURATION,
'end': (i + 1) * SLICE_DURATION
})
return segments
def build_srt_clips(subs, basedir):
LOG.info("Generating subtitles")
segments = subs_to_timed_segments(subs)
LOG.info("Building srt clips")
max_text_len = 30
subtitles = pysrt.SubRipFile()
first = True
for segment in segments:
start = segment['start'] * 1000
if first:
start += 3000
first = False
end = segment['end'] * 1000
text = segment['text']
text = text.strip()
if len(text) < max_text_len:
o = pysrt.SubRipItem()
o.start = pysrt.SubRipTime(0, 0, 0, start)
o.end = pysrt.SubRipTime(0, 0, 0, end)
o.text = text
subtitles.append(o)
else:
# Just split in two, should be ok in most cases
words = text.split()
o = pysrt.SubRipItem()
o.text = ' '.join(words[0:len(words)//2])
o.start = pysrt.SubRipTime(0, 0, 0, start)
chkpt = (start + end) / 2
o.end = pysrt.SubRipTime(0, 0, 0, chkpt)
subtitles.append(o)
o = pysrt.SubRipItem()
o.text = ' '.join(words[len(words)//2:])
o.start = pysrt.SubRipTime(0, 0, 0, chkpt)
o.end = pysrt.SubRipTime(0, 0, 0, end)
subtitles.append(o)
srt_path = os.path.join(basedir, 'video.srt')
subtitles.save(srt_path, encoding='utf-8')
LOG.info("Subtitles saved in srt file %s", srt_path)
return srt_path
iface = gr.Interface(
fn=demo,
inputs=[
gr.Text(value="https://youtu.be/tiZFewofSLM", label="English video url"),
gr.Checkbox(value=True, label='Translate to French')],
outputs=[
gr.Text(label="Video summary"),
gr.File(label="SRT file"),
gr.Video(label="Video with subtitles"),
])
iface.launch()
|