import streamlit as st import shap import xgboost from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split import datetime import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import plotly.express as px import pickle as pk import os # ml related from sklearn import ensemble, tree, linear_model from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import r2_score, mean_squared_error from sklearn.utils import shuffle import warnings from scipy import stats from scipy.stats import norm, skew warnings.filterwarnings('ignore') train_path = "train.csv" test_path = "test.csv" train_encode_path = "train_encode.csv" real = "RealEstate.csv" head = "head.jpg" @st.cache_data def load_train_data(train_path): return pd.read_csv(train_path) @st.cache_data def load_train_encode_data(train_encode_path): return pd.read_csv(train_encode_path) @st.cache_data def load_test_data(test_path): return pd.read_csv(test_path) @st.cache_data def load_data(real): return pd.read_csv(real) def save_data(value,res): file = 'db.csv' if not os.path.exists(file): with open(file,'w') as f: f.write("OverallQual,GrLivArea,GarageCars,GarageArea,TotalBsmtSF,fstFlrSF,FullBath,TotRmsAbvGrd,YearBuilt,YearRemodAdd,GarageYrBlt,MasVnrArea,Fireplaces,BsmtFinSF1,Result\n") with open(file,'a') as f: data = f"{OverallQual},{GrLivArea},{GarageCars},{GarageArea},{TotalBsmtSF},{fstFlrSF},{FullBath},{TotRmsAbvGrd},{YearBuilt},{YearRemodAdd},{GarageYrBlt},{MasVnrArea},{Fireplaces},{BsmtFinSF1},{res}\n" f.write(data) st.sidebar.image(head, caption="project on Artificial intelligence",use_column_width=True) st.title("House Pricing Analysis") menu=["House Prediction","Predicted House","About","Visual"] choices=st.sidebar.selectbox("Menu Bar",menu) if choices=='House Prediction': st.subheader("House Prediction") OverallQual=st.selectbox("Select the overall quality(10 being 'Very Excellent' and 1 being 'very poor')",(10,9,8,7,6,5,4,3,2,1)) GrLivArea= st.number_input("Enter Ground Floor Living Area (in Sqft)",value=0,min_value=0,format='%d') GarageArea=st.number_input("Enter area of Garage (in Sqft)",value=0.0,format='%f',step=1.0) GarageCars=st.number_input("Number of Cars to be accomodated in garage",min_value=1.0,max_value=10.0,step=1.0,format='%f') TotalBsmtSF=st.number_input("Enter area of Basement (in Sqft)",value=0.0,format='%f',step=1.0) fstFlrSF=st.number_input("Enter area of First Floor (in Sqft)",value=0,format='%d') FullBath=st.number_input("Enter number of Bathrooms",min_value=1,max_value=10,format='%d') TotRmsAbvGrd=st.number_input("Enter number of Rooms",min_value=1,max_value=10,format='%d') years=tuple([i for i in range(1872,2011)]) YearBuilt=st.selectbox("Select the overall quality(10 being 'Very Excellent' and 1 being 'very poor')",years) remyears=tuple([i for i in range(1950,2011)]) YearRemodAdd=st.selectbox("Select Remodel date (same as construction date if no remodeling or additions)",remyears) garyears=tuple([i for i in range(1872,2011)]) garyears=tuple(map(float,garyears)) GarageYrBlt=st.selectbox("Select year in which Garage was built)",garyears) MasVnrArea=st.number_input("Masonry veneer area (in Sqft)",value=0.0,format='%f',step=1.0) Fireplaces=st.number_input("Select number of FirePlaces",min_value=1,max_value=10,format='%d') BsmtFinSF1=st.number_input("Enter Basement Finished Area(in Sqft)",value=0,format='%d') submit = st.button('Predict') if submit: st.success("Prediction Done") value=[OverallQual,GrLivArea,GarageCars,GarageArea,TotalBsmtSF,fstFlrSF,FullBath,TotRmsAbvGrd,YearBuilt,YearRemodAdd,GarageYrBlt,MasVnrArea,Fireplaces,BsmtFinSF1] df=pd.DataFrame(value).transpose() # st.dataframe(df) model=pk.load(open('rfrmodel.pkl','rb')) scaler=pk.load(open('scale.pkl','rb')) #xgboostmodel=pk.load(open('xgboostmodel.pkl','rb')) scaler.transform(df) ans=int(model.predict(df)) st.subheader(f"The price is {ans} ($) ") save_data(value,ans) if choices=='Predicted House': st.subheader("Predicted House") st.info("expand to see data clearly") if os.path.exists("db.csv"): data = pd.read_csv('db.csv') st.write(data) else: st.error("please try some prediction, then the data will be available here") if choices=='About': st.subheader("About Us") info=''' A house value is simply more than location and square footage. Like the features that make up a person, an educated party would want to know all aspects that give a house its value. We are going to take advantage of all of the feature variables available to use and use it to analyze and predict house prices. We are going to break everything into logical steps that allow us to ensure the cleanest, most realistic data for our model to make accurate predictions from. - Load Data and Packages - Analyzing the Test Variable (Sale Price) - Multivariable Analysis - Impute Missing Data and Clean Data - Feature Transformation/Engineering - Modeling and Predictions ''' st.markdown(info,unsafe_allow_html=True) if choices=='Visual': st.subheader("Data Visualization") train_data = load_train_data(train_path) train_encode_data = load_train_encode_data(train_encode_path) test_data = load_test_data(test_path) X=train_encode_data.drop(['SalePrice'],axis=1) y=train_encode_data['SalePrice'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, shuffle=True) if st.checkbox("view dataset colum description"): st.subheader('displaying the column wise stats for the dataset') st.write(train_data.columns) st.write(train_data.describe()) st.subheader('Correlation b/w dataset columns') corrmatrix = train_data.corr() f,ax = plt.subplots(figsize=(20,9)) sns.heatmap(corrmatrix,vmax = .8, annot=True) #st.set_option('deprecation.showPyplotGlobalUse', False) st.pyplot() st.subheader("most correlated features") top_corr = train_data.corr() top_corr_feat = corrmatrix.index[abs(corrmatrix['SalePrice'])>.5] plt.figure(figsize=(10,10)) sns.heatmap(train_data[top_corr_feat].corr(), annot=True, cmap="RdYlGn") #st.set_option('deprecation.showPyplotGlobalUse', False) st.pyplot() st.subheader("Comparing Overall Quality vs Sale Price") sns.barplot(x=train_data.OverallQual, y=train_data.SalePrice, alpha=0.8) #st.set_option('deprecation.showPyplotGlobalUse', False) st.pyplot() st.subheader("Pairplot visualization to describe correlation easily") sns.set() cols = ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'FullBath', 'YearBuilt'] sns.pairplot(train_data[cols], size=2.5) #st.set_option('deprecation.showPyplotGlobalUse', False) st.pyplot() st.subheader("Analyis of Sale Price column in dataset") sns.distplot(train_data['SalePrice'] , fit=norm)# Get the fitted parameters used by the function (mu, sigma) = norm.fit(train_data['SalePrice']) st.write( '\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma)) plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution') #st.set_option('deprecation.showPyplotGlobalUse', False) st.pyplot() fig = plt.figure(figsize=(10,10)) res = stats.probplot(train_data['SalePrice'], plot=plt,) #st.set_option('deprecation.showPyplotGlobalUse', False) st.pyplot() #Explaning the model's predictions using SHAP values xgboostmodel = xgboost.XGBRegressor().fit(X_train, y_train) explainer = shap.Explainer(xgboostmodel) shap_values = explainer(X_train) # visualize the first prediction's explanation shap.plots.waterfall(shap_values[0]) st.header('SHAP Feature importances') plt.title('Feature importances based on SHAP values') shap.summary_plot(shap_values,X_train) st.pyplot(bbox_inches='tight') st.write('---') plt.title('Feature importances based on SHAP values (Bar plot)') shap.summary_plot(shap_values,X_train, plot_type="bar", show=False) st.pyplot(bbox_inches='tight')