Spaces:
Sleeping
Sleeping
File size: 8,525 Bytes
cb6a094 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import streamlit as st
import shap
import xgboost
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import datetime
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import pickle as pk
import os
# ml related
from sklearn import ensemble, tree, linear_model
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.utils import shuffle
import warnings
from scipy import stats
from scipy.stats import norm, skew
warnings.filterwarnings('ignore')
train_path = "train.csv"
test_path = "test.csv"
train_encode_path = "train_encode.csv"
real = "RealEstate.csv"
head = "head.jpg"
@st.cache_data
def load_train_data(train_path):
return pd.read_csv(train_path)
@st.cache_data
def load_train_encode_data(train_encode_path):
return pd.read_csv(train_encode_path)
@st.cache_data
def load_test_data(test_path):
return pd.read_csv(test_path)
@st.cache_data
def load_data(real):
return pd.read_csv(real)
def save_data(value,res):
file = 'db.csv'
if not os.path.exists(file):
with open(file,'w') as f:
f.write("OverallQual,GrLivArea,GarageCars,GarageArea,TotalBsmtSF,fstFlrSF,FullBath,TotRmsAbvGrd,YearBuilt,YearRemodAdd,GarageYrBlt,MasVnrArea,Fireplaces,BsmtFinSF1,Result\n")
with open(file,'a') as f:
data = f"{OverallQual},{GrLivArea},{GarageCars},{GarageArea},{TotalBsmtSF},{fstFlrSF},{FullBath},{TotRmsAbvGrd},{YearBuilt},{YearRemodAdd},{GarageYrBlt},{MasVnrArea},{Fireplaces},{BsmtFinSF1},{res}\n"
f.write(data)
st.sidebar.image(head, caption="project on Artificial intelligence",use_column_width=True)
st.title("House Pricing Analysis")
menu=["House Prediction","Predicted House","About","Visual"]
choices=st.sidebar.selectbox("Menu Bar",menu)
if choices=='House Prediction':
st.subheader("House Prediction")
OverallQual=st.selectbox("Select the overall quality(10 being 'Very Excellent' and 1 being 'very poor')",(10,9,8,7,6,5,4,3,2,1))
GrLivArea= st.number_input("Enter Ground Floor Living Area (in Sqft)",value=0,min_value=0,format='%d')
GarageArea=st.number_input("Enter area of Garage (in Sqft)",value=0.0,format='%f',step=1.0)
GarageCars=st.number_input("Number of Cars to be accomodated in garage",min_value=1.0,max_value=10.0,step=1.0,format='%f')
TotalBsmtSF=st.number_input("Enter area of Basement (in Sqft)",value=0.0,format='%f',step=1.0)
fstFlrSF=st.number_input("Enter area of First Floor (in Sqft)",value=0,format='%d')
FullBath=st.number_input("Enter number of Bathrooms",min_value=1,max_value=10,format='%d')
TotRmsAbvGrd=st.number_input("Enter number of Rooms",min_value=1,max_value=10,format='%d')
years=tuple([i for i in range(1872,2011)])
YearBuilt=st.selectbox("Select the overall quality(10 being 'Very Excellent' and 1 being 'very poor')",years)
remyears=tuple([i for i in range(1950,2011)])
YearRemodAdd=st.selectbox("Select Remodel date (same as construction date if no remodeling or additions)",remyears)
garyears=tuple([i for i in range(1872,2011)])
garyears=tuple(map(float,garyears))
GarageYrBlt=st.selectbox("Select year in which Garage was built)",garyears)
MasVnrArea=st.number_input("Masonry veneer area (in Sqft)",value=0.0,format='%f',step=1.0)
Fireplaces=st.number_input("Select number of FirePlaces",min_value=1,max_value=10,format='%d')
BsmtFinSF1=st.number_input("Enter Basement Finished Area(in Sqft)",value=0,format='%d')
submit = st.button('Predict')
if submit:
st.success("Prediction Done")
value=[OverallQual,GrLivArea,GarageCars,GarageArea,TotalBsmtSF,fstFlrSF,FullBath,TotRmsAbvGrd,YearBuilt,YearRemodAdd,GarageYrBlt,MasVnrArea,Fireplaces,BsmtFinSF1]
df=pd.DataFrame(value).transpose()
# st.dataframe(df)
model=pk.load(open('rfrmodel.pkl','rb'))
scaler=pk.load(open('scale.pkl','rb'))
#xgboostmodel=pk.load(open('xgboostmodel.pkl','rb'))
scaler.transform(df)
ans=int(model.predict(df))
st.subheader(f"The price is {ans} ($) ")
save_data(value,ans)
if choices=='Predicted House':
st.subheader("Predicted House")
st.info("expand to see data clearly")
if os.path.exists("db.csv"):
data = pd.read_csv('db.csv')
st.write(data)
else:
st.error("please try some prediction, then the data will be available here")
if choices=='About':
st.subheader("About Us")
info='''
A house value is simply more than location and square footage. Like the features that make up a person, an educated party would want to know all aspects that give a house its value.
We are going to take advantage of all of the feature variables available to use and use it to analyze and predict house prices.
We are going to break everything into logical steps that allow us to ensure the cleanest, most realistic data for our model to make accurate predictions from.
- Load Data and Packages
- Analyzing the Test Variable (Sale Price)
- Multivariable Analysis
- Impute Missing Data and Clean Data
- Feature Transformation/Engineering
- Modeling and Predictions
'''
st.markdown(info,unsafe_allow_html=True)
if choices=='Visual':
st.subheader("Data Visualization")
train_data = load_train_data(train_path)
train_encode_data = load_train_encode_data(train_encode_path)
test_data = load_test_data(test_path)
X=train_encode_data.drop(['SalePrice'],axis=1)
y=train_encode_data['SalePrice']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, shuffle=True)
if st.checkbox("view dataset colum description"):
st.subheader('displaying the column wise stats for the dataset')
st.write(train_data.columns)
st.write(train_data.describe())
st.subheader('Correlation b/w dataset columns')
corrmatrix = train_data.corr()
f,ax = plt.subplots(figsize=(20,9))
sns.heatmap(corrmatrix,vmax = .8, annot=True)
#st.set_option('deprecation.showPyplotGlobalUse', False)
st.pyplot()
st.subheader("most correlated features")
top_corr = train_data.corr()
top_corr_feat = corrmatrix.index[abs(corrmatrix['SalePrice'])>.5]
plt.figure(figsize=(10,10))
sns.heatmap(train_data[top_corr_feat].corr(), annot=True, cmap="RdYlGn")
#st.set_option('deprecation.showPyplotGlobalUse', False)
st.pyplot()
st.subheader("Comparing Overall Quality vs Sale Price")
sns.barplot(x=train_data.OverallQual, y=train_data.SalePrice, alpha=0.8)
#st.set_option('deprecation.showPyplotGlobalUse', False)
st.pyplot()
st.subheader("Pairplot visualization to describe correlation easily")
sns.set()
cols = ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'FullBath', 'YearBuilt']
sns.pairplot(train_data[cols], size=2.5)
#st.set_option('deprecation.showPyplotGlobalUse', False)
st.pyplot()
st.subheader("Analyis of Sale Price column in dataset")
sns.distplot(train_data['SalePrice'] , fit=norm)# Get the fitted parameters used by the function
(mu, sigma) = norm.fit(train_data['SalePrice'])
st.write( '\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma))
plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)], loc='best')
plt.ylabel('Frequency')
plt.title('SalePrice distribution')
#st.set_option('deprecation.showPyplotGlobalUse', False)
st.pyplot()
fig = plt.figure(figsize=(10,10))
res = stats.probplot(train_data['SalePrice'], plot=plt,)
#st.set_option('deprecation.showPyplotGlobalUse', False)
st.pyplot()
#Explaning the model's predictions using SHAP values
xgboostmodel = xgboost.XGBRegressor().fit(X_train, y_train)
explainer = shap.Explainer(xgboostmodel)
shap_values = explainer(X_train)
# visualize the first prediction's explanation
shap.plots.waterfall(shap_values[0])
st.header('SHAP Feature importances')
plt.title('Feature importances based on SHAP values')
shap.summary_plot(shap_values,X_train)
st.pyplot(bbox_inches='tight')
st.write('---')
plt.title('Feature importances based on SHAP values (Bar plot)')
shap.summary_plot(shap_values,X_train, plot_type="bar", show=False)
st.pyplot(bbox_inches='tight')
|