File size: 1,908 Bytes
13f6a8b
 
 
 
 
 
 
 
 
 
 
d5065cb
13f6a8b
 
 
 
 
 
d5065cb
 
13f6a8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: utf-8 -*-
"""app

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1Uvn7yZCyrMpOYNPb7K0G45tQZJVx8LyX
"""

from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
import gradio as gr
#import torch
from PIL import Image

model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")

# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model.to(device)



max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}

def predict_step(image):
#   images = []
#   for image_path in image_paths:
#     i_image = Image.open(image_path)
#     if i_image.mode != "RGB":
#       i_image = i_image.convert(mode="RGB")

#     images.append(i_image)

  pixel_values = feature_extractor(images = image, return_tensors = "pt").pixel_values
  pixel_values = pixel_values.to(device)

  output_ids = model.generate(pixel_values, **gen_kwargs)

  preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
  preds = [pred.strip() for pred in preds]
  return preds

inputs = [ gr.inputs.Image(type = 'pil', label = 'Original Image')]
outputs = [ gr.outputs.Textbox(label = 'Caption')]
title = 'Image Captioning using ViT + GPT2'
description = 'ViT and GPT2 are used here to generate Image Caption for the user uploaded image.'
article = " <a href=' https://huggingface.co/sachin/vit2distilgpt2 '>Model Repository on Hugging Face Model Hub</a>" 

gr.Interface(
    predict_step,
    inputs, outputs, 
    title = title,
    description = description, 
    article = article,
    theme = 'huggingface'
).launch(debug = True, enable_queue = True)