Spaces:
Build error
Build error
Rami
commited on
Commit
·
3998c95
1
Parent(s):
976d3ed
AutomatiX-Deport added
Browse files- app.py +134 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import psycopg2 as pgsql
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
import google.generativeai as genai
|
| 8 |
+
|
| 9 |
+
# Load environment variables
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
# Configure Genai Key
|
| 13 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
| 14 |
+
|
| 15 |
+
# Function to load Google Gemini Model and provide queries as response
|
| 16 |
+
def get_gemini_response(question, prompt):
|
| 17 |
+
model = genai.GenerativeModel('gemini-pro')
|
| 18 |
+
response = model.generate_content([prompt[0], question])
|
| 19 |
+
return response.text.strip()
|
| 20 |
+
|
| 21 |
+
# Function to retrieve query from the database
|
| 22 |
+
def read_sql_query(sql, db_params):
|
| 23 |
+
try:
|
| 24 |
+
conn = pgsql.connect(**db_params)
|
| 25 |
+
cur = conn.cursor()
|
| 26 |
+
cur.execute(sql)
|
| 27 |
+
rows = cur.fetchall()
|
| 28 |
+
colnames = [desc[0] for desc in cur.description] if cur.description else []
|
| 29 |
+
conn.commit()
|
| 30 |
+
cur.close()
|
| 31 |
+
conn.close()
|
| 32 |
+
df = pd.DataFrame(rows, columns=colnames)
|
| 33 |
+
|
| 34 |
+
# Convert 'price' column to numeric if it exists
|
| 35 |
+
if 'price' in df.columns:
|
| 36 |
+
df['price'] = pd.to_numeric(df['price'], errors='coerce')
|
| 37 |
+
|
| 38 |
+
return df
|
| 39 |
+
except Exception as e:
|
| 40 |
+
st.error(f"An error occurred: {e}")
|
| 41 |
+
return pd.DataFrame()
|
| 42 |
+
|
| 43 |
+
# Define your PostgreSQL connection parameters
|
| 44 |
+
db_params = {
|
| 45 |
+
'dbname': 'GeminiPro',
|
| 46 |
+
'user': 'postgres',
|
| 47 |
+
'password': 'root',
|
| 48 |
+
'host': 'localhost',
|
| 49 |
+
'port': 5432
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
# Define Your Prompt
|
| 53 |
+
prompt = [
|
| 54 |
+
"""
|
| 55 |
+
You are an expert in converting English questions to SQL queries!
|
| 56 |
+
The SQL database has a table named 'department_store' with the following columns:
|
| 57 |
+
id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
| 58 |
+
|
| 59 |
+
Examples:
|
| 60 |
+
- How many products do we have in total?
|
| 61 |
+
The SQL command will be: SELECT COUNT(*) FROM department_store;
|
| 62 |
+
- What are all the products in the Electronics category?
|
| 63 |
+
The SQL command will be: SELECT * FROM department_store WHERE category = 'Electronics';
|
| 64 |
+
|
| 65 |
+
The SQL code should not include backticks and should not start with the word 'SQL'.
|
| 66 |
+
"""
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
# Streamlit App
|
| 70 |
+
st.set_page_config(page_title="AutomatiX - Department Store Analytics", layout="wide")
|
| 71 |
+
|
| 72 |
+
# Sidebar for user input
|
| 73 |
+
st.sidebar.title("AutomatiX - Department Store Chat Interface")
|
| 74 |
+
question = st.sidebar.text_area("Enter your question:", key="input")
|
| 75 |
+
submit = st.sidebar.button("Ask Me")
|
| 76 |
+
|
| 77 |
+
# Main content area
|
| 78 |
+
st.title("AutomatiX - Department Store Dashboard")
|
| 79 |
+
|
| 80 |
+
if submit:
|
| 81 |
+
with st.spinner("Generating and fetching data..."):
|
| 82 |
+
sql_query = get_gemini_response(question, prompt)
|
| 83 |
+
# st.code(sql_query, language="sql")
|
| 84 |
+
|
| 85 |
+
df = read_sql_query(sql_query, db_params)
|
| 86 |
+
|
| 87 |
+
if not df.empty:
|
| 88 |
+
st.success("Query executed successfully!")
|
| 89 |
+
|
| 90 |
+
# Display data in a table
|
| 91 |
+
st.subheader("Data Table")
|
| 92 |
+
st.dataframe(df)
|
| 93 |
+
|
| 94 |
+
# Create visualizations based on the data
|
| 95 |
+
st.subheader("Data Visualizations")
|
| 96 |
+
|
| 97 |
+
col1, col2 = st.columns(2)
|
| 98 |
+
|
| 99 |
+
with col1:
|
| 100 |
+
if 'price' in df.columns and df['price'].notna().any():
|
| 101 |
+
fig = px.histogram(df, x='price', title='Price Distribution')
|
| 102 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 103 |
+
|
| 104 |
+
if 'category' in df.columns:
|
| 105 |
+
category_counts = df['category'].value_counts()
|
| 106 |
+
fig = px.pie(values=category_counts.values, names=category_counts.index, title='Products by Category')
|
| 107 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 108 |
+
|
| 109 |
+
with col2:
|
| 110 |
+
if 'last_restock_date' in df.columns:
|
| 111 |
+
df['last_restock_date'] = pd.to_datetime(df['last_restock_date'], errors='coerce')
|
| 112 |
+
df['restock_month'] = df['last_restock_date'].dt.to_period('M')
|
| 113 |
+
restock_counts = df['restock_month'].value_counts().sort_index()
|
| 114 |
+
fig = px.line(x=restock_counts.index.astype(str), y=restock_counts.values, title='Restocking Trend')
|
| 115 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 116 |
+
|
| 117 |
+
if 'product_name' in df.columns and 'price' in df.columns and df['price'].notna().any():
|
| 118 |
+
top_prices = df.sort_values('price', ascending=False).head(10)
|
| 119 |
+
fig = px.bar(top_prices, x='product_name', y='price', title='Top 10 Most Expensive Products')
|
| 120 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 121 |
+
else:
|
| 122 |
+
st.warning("No data returned from the query.")
|
| 123 |
+
|
| 124 |
+
else:
|
| 125 |
+
st.info("Enter a question and click 'Ask Me' to get started!")
|
| 126 |
+
|
| 127 |
+
# Footer
|
| 128 |
+
st.sidebar.markdown("---")
|
| 129 |
+
st.sidebar.info("You can ask questions like:\n"
|
| 130 |
+
"1.What are all the products in the Electronics category?\n"
|
| 131 |
+
"2.What is the average price of products in each category?\n"
|
| 132 |
+
"3.Which products have a stock quantity less than 30?\n"
|
| 133 |
+
"4.What are the top 5 most expensive products?")
|
| 134 |
+
st.sidebar.warning("CopyRights@AutomatiX - Powered by Streamlit and Google Gemini")
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
google-generativeai
|
| 3 |
+
python-dotenv
|
| 4 |
+
psycopg2-binary
|
| 5 |
+
mysql-connector-python
|
| 6 |
+
pandas
|