Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import pandas as pd | |
import plotly.express as px | |
import ast | |
import google.generativeai as genai | |
from io import StringIO | |
from dotenv import load_dotenv | |
# Load environment variables | |
load_dotenv() | |
# Configure Genai Key | |
# genai.configure(api_key=os.environ.get("GOOGLE_API_KEY")) | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
# Function to load Google Gemini Model and provide queries as response | |
def get_gemini_response(question, prompt): | |
model = genai.GenerativeModel('gemini-pro') | |
response = model.generate_content([prompt[0], question]) | |
return response.text.strip() | |
# Function to load data from CSV | |
def load_data(): | |
# This is a sample CSV content. In practice, you'd read this from a file. | |
csv_content = """ | |
id,product_name,category,price,stock_quantity,supplier,last_restock_date | |
1,Cotton T-Shirt,Clothing,19.99,100,FashionCo,2024-03-01 | |
2,Denim Jeans,Clothing,49.99,75,DenimWorld,2024-02-15 | |
3,Running Shoes,Footwear,79.99,50,SportyFeet,2024-03-10 | |
4,Leather Wallet,Accessories,29.99,30,LeatherCrafts,2024-01-20 | |
5,Smartphone Case,Electronics,14.99,200,TechProtect,2024-03-05 | |
6,Coffee Maker,Appliances,89.99,25,KitchenTech,2024-02-28 | |
7,Yoga Mat,Sports,24.99,40,YogaEssentials,2024-03-15 | |
8,Backpack,Bags,39.99,60,TravelGear,2024-02-10 | |
9,Sunglasses,Accessories,59.99,35,ShadesMaster,2024-03-20 | |
10,Bluetooth Speaker,Electronics,69.99,45,SoundWave,2024-01-30 | |
""" | |
df = pd.read_csv(StringIO(csv_content)) | |
df['price'] = pd.to_numeric(df['price'], errors='coerce') | |
df['last_restock_date'] = pd.to_datetime(df['last_restock_date'], errors='coerce') | |
return df | |
# # Function to execute pandas query | |
# def execute_pandas_query(df, query): | |
# try: | |
# # This is a very simple and unsafe way to execute queries. | |
# # In a real application, you'd need to parse the SQL and translate it to pandas operations. | |
# result = eval(f"df.{query}") | |
# return result | |
# except Exception as e: | |
# st.error(f"An error occurred: {e}") | |
# return pd.DataFrame() | |
# # Define Your Prompt | |
# prompt = [ | |
# """ | |
# You are an expert in converting English questions to pandas DataFrame operations! | |
# The DataFrame 'df' has the following columns: | |
# id, product_name, category, price, stock_quantity, supplier, last_restock_date. | |
# Examples: | |
# - How many products do we have in total? | |
# The pandas operation will be: len() | |
# - What are all the products in the Electronics category? | |
# The pandas operation will be: query("category == 'Electronics'") | |
# The pandas operation should be a valid Python expression that can be applied to a DataFrame 'df'. | |
# """ | |
# ] | |
# Function to execute pandas query | |
# def execute_pandas_query(df, query): | |
# try: | |
# # Remove any 'df.' prefixes from the query | |
# query = query.replace('df.', '') | |
# # Execute the query | |
# if query.startswith('query'): | |
# # For filtering operations | |
# result = df.query(query.split('(', 1)[1].rsplit(')', 1)[0].strip('"\'')) | |
# elif query.startswith('groupby'): | |
# # For groupby operations | |
# group_col, agg_func = query.split('.', 2)[1:] | |
# result = eval(f"df.groupby('{group_col}').{agg_func}") | |
# else: | |
# # For other operations | |
# result = eval(f"df.{query}") | |
# return result | |
# except Exception as e: | |
# st.error(f"An error occurred: {e}") | |
# return pd.DataFrame() | |
# # Define Your Prompt | |
# prompt = [ | |
# """ | |
# You are an expert in converting English questions to pandas DataFrame operations! | |
# The DataFrame 'df' has the following columns: | |
# id, product_name, category, price, stock_quantity, supplier, last_restock_date. | |
# Examples: | |
# - How many products do we have in total? | |
# The pandas operation will be: shape[0] | |
# - What are all the products in the Electronics category? | |
# The pandas operation will be: query("category == 'Electronics'") | |
# - What is the average price of products in each category? | |
# The pandas operation will be: groupby('category').mean()['price'] | |
# The pandas operation should be a valid Python expression that can be applied to a DataFrame without the 'df.' prefix. | |
# """ | |
# ] | |
# Function to safely evaluate a string as a Python expression | |
def safe_eval(expr, df): | |
try: | |
# Parse the expression | |
parsed = ast.parse(expr, mode='eval') | |
# Define allowed names | |
allowed_names = { | |
'df': df, | |
'query': df.query, | |
'groupby': df.groupby, | |
'mean': pd.DataFrame.mean, | |
'sum': pd.DataFrame.sum, | |
'count': pd.DataFrame.count, | |
'max': pd.DataFrame.max, | |
'min': pd.DataFrame.min | |
} | |
# Evaluate the expression | |
return eval(compile(parsed, '<string>', 'eval'), allowed_names) | |
except Exception as e: | |
st.error(f"Error in query execution: {e}") | |
return pd.DataFrame() | |
# Function to execute pandas query | |
def execute_pandas_query(df, query): | |
try: | |
# Remove any 'df.' prefixes from the query | |
query = query.replace('df.', '') | |
# Execute the query | |
result = safe_eval(query, df) | |
# Convert result to DataFrame if it's not already | |
if not isinstance(result, pd.DataFrame): | |
if isinstance(result, pd.Series): | |
result = result.to_frame() | |
else: | |
result = pd.DataFrame({'Result': [result]}) | |
return result | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
return pd.DataFrame() | |
# Define Your Prompt | |
prompt = [ | |
""" | |
You are an expert in converting English questions to pandas DataFrame operations! | |
The DataFrame 'df' has the following columns: | |
id, product_name, category, price, stock_quantity, supplier, last_restock_date. | |
Examples: | |
- How many products do we have in total? | |
The pandas operation will be: len(df) | |
- What are all the products in the Electronics category? | |
The pandas operation will be: df.query("category == 'Electronics'") | |
- What is the average price of products in each category? | |
The pandas operation will be: df.groupby('category')['price'].mean() | |
The pandas operation should be a valid Python expression that can be applied to a DataFrame named 'df'. | |
Always include 'df.' at the beginning of your operations unless you're using a function like len(). | |
""" | |
] | |
# Streamlit App | |
st.set_page_config(page_title="AutomatiX - Department Store Analytics", layout="wide") | |
# Load data | |
df = load_data() | |
# Sidebar for user input | |
st.sidebar.title("Swetha-Manisha-Kavya- PAVINAYA- AutomatiX - Department Store Chat Interface") | |
question = st.sidebar.text_area("Enter your question:", key="input") | |
submit = st.sidebar.button("Ask Me") | |
# Main content area | |
st.title("AutomatiX - Department Store Dashboard") | |
if submit: | |
with st.spinner("Generating and Fetching the data..."): | |
pandas_query = get_gemini_response(question, prompt) | |
# st.code(pandas_query, language="python") | |
result_df = execute_pandas_query(df, pandas_query) | |
if not result_df.empty: | |
st.success("Query executed successfully!") | |
# Display data in a table | |
st.subheader("Data Table") | |
st.dataframe(result_df) | |
# # Create visualizations based on the data | |
st.subheader("Data Visualizations") | |
col1, col2 = st.columns(2) | |
with col1: | |
if 'price' in result_df.columns and result_df['price'].notna().any(): | |
fig = px.histogram(result_df, x='price', title='Price Distribution') | |
st.plotly_chart(fig, use_container_width=True) | |
if 'category' in result_df.columns: | |
category_counts = result_df['category'].value_counts() | |
fig = px.pie(values=category_counts.values, names=category_counts.index, title='Products by Category') | |
st.plotly_chart(fig, use_container_width=True) | |
with col2: | |
if 'last_restock_date' in result_df.columns: | |
result_df['restock_month'] = result_df['last_restock_date'].dt.to_period('M') | |
restock_counts = result_df['restock_month'].value_counts().sort_index() | |
fig = px.line(x=restock_counts.index.astype(str), y=restock_counts.values, title='Restocking Trend') | |
st.plotly_chart(fig, use_container_width=True) | |
if 'product_name' in result_df.columns and 'price' in result_df.columns and result_df['price'].notna().any(): | |
top_prices = result_df.sort_values('price', ascending=False).head(10) | |
fig = px.bar(top_prices, x='product_name', y='price', title='Top 10 Most Expensive Products') | |
st.plotly_chart(fig, use_container_width=True) | |
else: | |
st.warning("No data returned from the query.") | |
else: | |
st.info("Enter a question and click 'Ask Me' to get started!") | |
# Footer | |
st.sidebar.markdown("---") | |
st.sidebar.subheader("Example Queries") | |
st.sidebar.info(""" | |
Try these example queries to explore the dashboard: | |
1. What are the top 5 most expensive products in the Electronics category? | |
2. What is the average price and total stock for each category? | |
3. List the all the products? | |
4. What is the distribution of prices for products supplied by each supplier? | |
5. Which products have a stock quantity less than 30? | |
Feel free to modify these queries or ask your own questions! | |
""") | |
st.sidebar.warning("© AutomatiX - Powered by Streamlit and Google Gemini") |