File size: 1,670 Bytes
0a5d39a
7a75289
0a5d39a
71c9026
c1d9e7e
1065d81
 
0a5d39a
1065d81
 
25cd492
1065d81
f06c07a
 
 
1065d81
9401792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065d81
0a5d39a
15a4a02
0a5d39a
1065d81
25cd492
1fb4531
25cd492
0a5d39a
 
 
15a4a02
 
 
 
3d1f2ed
15a4a02
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import pandas as pd
import ydata_profiling
import gradio as gr
from pydantic_settings import BaseSettings

import sweetviz as sv
def generate_report(file,type):
    df = pd.read_csv(file) if file.name.endswith(".csv") else pd.read_excel(file)
    if type == "pandas profiling":
        return  ydata_profiling.ProfileReport(df).to_html()
 
    elif type == "sweetviz":
        return sv.analyze(df).show_html(open_browser=True, 
            layout='widescreen', 
            scale=None)
    
# Custom HTML template for styling the report output
custom_html = """
<!DOCTYPE html>
<html>
<head>
<title>Data Profile Report</title>
<style>
body {
    font-family: Arial, sans-serif;
    margin: 0;
    padding: 20px;
}
.container {
    width: 80%;
    margin: auto;
}
</style>
</head>
<body>
<div class="container">
{content}
</div>
</body>
</html>
"""
   

profile = gr.Interface(
    generate_report,
    [gr.File(file_types=['.csv','.xlsx'], label="Upload a CSV or Excel file"),
     gr.Radio(["pandas profiling", "sweetviz"], label="Type of report", info="Explore the data")],
    gr.HTML(label="Data profile Report", html_content=custom_html),
    title="Excel sheet Profiling Report",
    live=True,
)

cluster = gr.Interface(
    generate_report,
    [gr.File(file_types=['.csv','.xlsx'], label="Upload a CSV or Excel file"),
     gr.Radio(["pandas profiling", "sweetviz"], label="Type of report", info="Explore the data")],
    gr.HTML(label="Data profile Report", html_content=custom_html),
    title="Excel sheet Profiling Report",
    live=True,
)

demo = gr.TabbedInterface([cluster, profile], ["Product clustering", "Data Exploration"])

demo.launch(share=True)