|
import gradio as gr |
|
import torch |
|
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline |
|
import os |
|
import zipfile |
|
import shutil |
|
import matplotlib.pyplot as plt |
|
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc |
|
from tqdm import tqdm |
|
from PIL import Image |
|
import uuid |
|
import tempfile |
|
import pandas as pd |
|
from numpy import exp |
|
import numpy as np |
|
from sklearn.metrics import ConfusionMatrixDisplay |
|
import urllib.request |
|
|
|
|
|
models = [ |
|
"umm-maybe/AI-image-detector", |
|
"Organika/sdxl-detector", |
|
"cmckinle/sdxl-flux-detector", |
|
] |
|
|
|
pipe0 = pipeline("image-classification", f"{models[0]}") |
|
pipe1 = pipeline("image-classification", f"{models[1]}") |
|
pipe2 = pipeline("image-classification", f"{models[2]}") |
|
|
|
fin_sum = [] |
|
uid = uuid.uuid4() |
|
|
|
|
|
def softmax(vector): |
|
e = exp(vector - vector.max()) |
|
return e / e.sum() |
|
|
|
|
|
def image_classifier0(image): |
|
labels = ["AI", "Real"] |
|
outputs = pipe0(image) |
|
results = {} |
|
for idx, result in enumerate(outputs): |
|
results[labels[idx]] = float(outputs[idx]['score']) |
|
fin_sum.append(results) |
|
return results |
|
|
|
def image_classifier1(image): |
|
labels = ["AI", "Real"] |
|
outputs = pipe1(image) |
|
results = {} |
|
for idx, result in enumerate(outputs): |
|
results[labels[idx]] = float(outputs[idx]['score']) |
|
fin_sum.append(results) |
|
return results |
|
|
|
def image_classifier2(image): |
|
labels = ["AI", "Real"] |
|
outputs = pipe2(image) |
|
results = {} |
|
for idx, result in enumerate(outputs): |
|
results[labels[idx]] = float(outputs[idx]['score']) |
|
fin_sum.append(results) |
|
return results |
|
|
|
def aiornot0(image): |
|
labels = ["AI", "Real"] |
|
mod = models[0] |
|
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod) |
|
model0 = AutoModelForImageClassification.from_pretrained(mod) |
|
input = feature_extractor0(image, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model0(**input) |
|
logits = outputs.logits |
|
probability = softmax(logits) |
|
px = pd.DataFrame(probability.numpy()) |
|
prediction = logits.argmax(-1).item() |
|
label = labels[prediction] |
|
|
|
html_out = f""" |
|
<h1>This image is likely: {label}</h1><br><h3> |
|
Probabilities:<br> |
|
Real: {float(px[1][0]):.4f}<br> |
|
AI: {float(px[0][0]):.4f}""" |
|
|
|
results = { |
|
"Real": float(px[1][0]), |
|
"AI": float(px[0][0]) |
|
} |
|
fin_sum.append(results) |
|
return gr.HTML.update(html_out), results |
|
|
|
def aiornot1(image): |
|
labels = ["AI", "Real"] |
|
mod = models[1] |
|
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod) |
|
model1 = AutoModelForImageClassification.from_pretrained(mod) |
|
input = feature_extractor1(image, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model1(**input) |
|
logits = outputs.logits |
|
probability = softmax(logits) |
|
px = pd.DataFrame(probability.numpy()) |
|
prediction = logits.argmax(-1).item() |
|
label = labels[prediction] |
|
|
|
html_out = f""" |
|
<h1>This image is likely: {label}</h1><br><h3> |
|
Probabilities:<br> |
|
Real: {float(px[1][0]):.4f}<br> |
|
AI: {float(px[0][0]):.4f}""" |
|
|
|
results = { |
|
"Real": float(px[1][0]), |
|
"AI": float(px[0][0]) |
|
} |
|
fin_sum.append(results) |
|
return gr.HTML.update(html_out), results |
|
|
|
def aiornot2(image): |
|
labels = ["AI", "Real"] |
|
mod = models[2] |
|
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod) |
|
model2 = AutoModelForImageClassification.from_pretrained(mod) |
|
input = feature_extractor2(image, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model2(**input) |
|
logits = outputs.logits |
|
probability = softmax(logits) |
|
px = pd.DataFrame(probability.numpy()) |
|
prediction = logits.argmax(-1).item() |
|
label = labels[prediction] |
|
|
|
html_out = f""" |
|
<h1>This image is likely: {label}</h1><br><h3> |
|
Probabilities:<br> |
|
Real: {float(px[1][0]):.4f}<br> |
|
AI: {float(px[0][0]):.4f}""" |
|
|
|
results = { |
|
"Real": float(px[1][0]), |
|
"AI": float(px[0][0]) |
|
} |
|
fin_sum.append(results) |
|
return gr.HTML.update(html_out), results |
|
|
|
|
|
def extract_zip(zip_file): |
|
temp_dir = tempfile.mkdtemp() |
|
with zipfile.ZipFile(zip_file, 'r') as z: |
|
z.extractall(temp_dir) |
|
return temp_dir |
|
|
|
|
|
def classify_images(image_dir, model_pipeline, model_idx): |
|
images = [] |
|
labels = [] |
|
preds = [] |
|
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]: |
|
folder_path = os.path.join(image_dir, folder_name) |
|
if not os.path.exists(folder_path): |
|
print(f"Folder not found: {folder_path}") |
|
continue |
|
for img_name in os.listdir(folder_path): |
|
img_path = os.path.join(folder_path, img_name) |
|
try: |
|
img = Image.open(img_path).convert("RGB") |
|
|
|
|
|
pred = model_pipeline(img) |
|
pred_label = 0 if pred[0]['label'] == 'AI' else 1 |
|
|
|
preds.append(pred_label) |
|
labels.append(ground_truth_label) |
|
images.append(img_name) |
|
except Exception as e: |
|
print(f"Error processing image {img_name} in model {model_idx}: {e}") |
|
|
|
print(f"Model {model_idx} processed {len(images)} images") |
|
return labels, preds, images |
|
|
|
|
|
def evaluate_model(labels, preds): |
|
cm = confusion_matrix(labels, preds) |
|
accuracy = accuracy_score(labels, preds) |
|
roc_score = roc_auc_score(labels, preds) |
|
report = classification_report(labels, preds) |
|
fpr, tpr, _ = roc_curve(labels, preds) |
|
roc_auc = auc(fpr, tpr) |
|
|
|
fig, ax = plt.subplots() |
|
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["AI", "Real"]) |
|
disp.plot(cmap=plt.cm.Blues, ax=ax) |
|
plt.close(fig) |
|
|
|
fig_roc, ax_roc = plt.subplots() |
|
ax_roc.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') |
|
ax_roc.plot([0, 1], [0, 1], color='gray', linestyle='--') |
|
ax_roc.set_xlim([0.0, 1.0]) |
|
ax_roc.set_ylim([0.0, 1.05]) |
|
ax_roc.set_xlabel('False Positive Rate') |
|
ax_roc.set_ylabel('True Positive Rate') |
|
ax_roc.set_title('Receiver Operating Characteristic (ROC) Curve') |
|
ax_roc.legend(loc="lower right") |
|
plt.close(fig_roc) |
|
|
|
return accuracy, roc_score, report, fig, fig_roc |
|
|
|
|
|
def process_zip(zip_file): |
|
extracted_dir = extract_zip(zip_file.name) |
|
|
|
|
|
results = {} |
|
for idx in range(len(models)): |
|
print(f"Processing with model {models[idx]}") |
|
|
|
|
|
pipe = pipeline("image-classification", f"{models[idx]}") |
|
print(f"Initialized pipeline for {models[idx]}") |
|
|
|
|
|
labels, preds, images = classify_images(extracted_dir, pipe, idx) |
|
|
|
|
|
print(f"Predictions for model {models[idx]}: {preds}") |
|
|
|
accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds) |
|
|
|
|
|
results[f'Model_{idx}_accuracy'] = accuracy |
|
results[f'Model_{idx}_roc_score'] = roc_score |
|
results[f'Model_{idx}_report'] = report |
|
results[f'Model_{idx}_cm_fig'] = cm_fig |
|
results[f'Model_{idx}_roc_fig'] = roc_fig |
|
|
|
shutil.rmtree(extracted_dir) |
|
|
|
|
|
return (results['Model_0_accuracy'], results['Model_0_roc_score'], results['Model_0_report'], |
|
results['Model_0_cm_fig'], results['Model_0_roc_fig'], |
|
results['Model_1_accuracy'], results['Model_1_roc_score'], results['Model_1_report'], |
|
results['Model_1_cm_fig'], results['Model_1_roc_fig'], |
|
results['Model_2_accuracy'], results['Model_2_roc_score'], results['Model_2_report'], |
|
results['Model_2_cm_fig'], results['Model_2_roc_fig']) |
|
|
|
|
|
|
|
|
|
|
|
def load_url(url): |
|
try: |
|
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png") |
|
image = Image.open(f"{uid}tmp_im.png") |
|
mes = "Image Loaded" |
|
except Exception as e: |
|
image = None |
|
mes = f"Image not Found<br>Error: {e}" |
|
return image, mes |
|
|
|
def tot_prob(): |
|
try: |
|
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum) |
|
fin_sub = 1 - fin_out |
|
out = { |
|
"Real": f"{fin_out:.4f}", |
|
"AI": f"{fin_sub:.4f}" |
|
} |
|
return out |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
def fin_clear(): |
|
fin_sum.clear() |
|
return None |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""") |
|
|
|
with gr.Tabs(): |
|
|
|
with gr.Tab("Single Image Detection"): |
|
with gr.Column(): |
|
inp = gr.Image(type='pil') |
|
in_url = gr.Textbox(label="Image URL") |
|
with gr.Row(): |
|
load_btn = gr.Button("Load URL") |
|
btn = gr.Button("Detect AI") |
|
mes = gr.HTML("""""") |
|
|
|
model_names = ['resnet7', 'vit', 'sdxlDetector'] |
|
with gr.Group(): |
|
with gr.Row(): |
|
fin = gr.Label(label="Final Probability") |
|
with gr.Row(): |
|
for i, model in enumerate(models): |
|
with gr.Column(): |
|
gr.HTML(f"""<b>Testing on Model {model_names[i]}:</b>""") |
|
globals()[f'outp{i}'] = gr.HTML("""""") |
|
globals()[f'n_out{i}'] = gr.Label(label="Output") |
|
|
|
btn.click(fin_clear, None, fin, show_progress=False) |
|
load_btn.click(load_url, in_url, [inp, mes]) |
|
|
|
btn.click(aiornot0, [inp], [outp0, n_out0]).then( |
|
aiornot1, [inp], [outp1, n_out1]).then( |
|
aiornot2, [inp], [outp2, n_out2]).then( |
|
tot_prob, None, fin, show_progress=False) |
|
|
|
|
|
with gr.Tab("Batch Image Processing"): |
|
zip_file = gr.File(label="Upload Zip (two folders: real, ai)") |
|
batch_btn = gr.Button("Process Batch") |
|
|
|
for i, model in enumerate(models): |
|
with gr.Group(): |
|
gr.Markdown(f"### Results for {model}") |
|
globals()[f'output_acc{i}'] = gr.Label(label=f"Model {i} Accuracy") |
|
globals()[f'output_roc{i}'] = gr.Label(label=f"Model {i} ROC Score") |
|
globals()[f'output_report{i}'] = gr.Textbox(label=f"Model {i} Classification Report", lines=10) |
|
globals()[f'output_cm{i}'] = gr.Plot(label=f"Model {i} Confusion Matrix") |
|
globals()[f'output_roc_plot{i}'] = gr.Plot(label=f"Model {i} ROC Curve") |
|
|
|
|
|
batch_btn.click(process_zip, zip_file, |
|
[output_acc0, output_roc0, output_report0, output_cm0, output_roc_plot0, |
|
output_acc1, output_roc1, output_report1, output_cm1, output_roc_plot1, |
|
output_acc2, output_roc2, output_report2, output_cm2, output_roc_plot2]) |
|
|
|
app.launch(show_api=False, max_threads=24) |
|
|