Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
# Load class indices
|
| 8 |
+
with open("class_indices.json", "r") as f:
|
| 9 |
+
class_indices = json.load(f)
|
| 10 |
+
|
| 11 |
+
# Reverse the mapping for predictions
|
| 12 |
+
class_names = {v: k for k, v in class_indices.items()}
|
| 13 |
+
|
| 14 |
+
# Load the TFLite model
|
| 15 |
+
interpreter = tf.lite.Interpreter(model_path="model.tflite")
|
| 16 |
+
interpreter.allocate_tensors()
|
| 17 |
+
|
| 18 |
+
# Get input and output details
|
| 19 |
+
input_details = interpreter.get_input_details()
|
| 20 |
+
output_details = interpreter.get_output_details()
|
| 21 |
+
|
| 22 |
+
# Define the image preprocessing function
|
| 23 |
+
def preprocess_image(image, target_size=(224, 224)):
|
| 24 |
+
image = image.resize(target_size)
|
| 25 |
+
image = np.array(image) / 255.0 # Normalize the image
|
| 26 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
| 27 |
+
return image.astype(np.float32)
|
| 28 |
+
|
| 29 |
+
# Define prediction function
|
| 30 |
+
def predict(image):
|
| 31 |
+
input_data = preprocess_image(image)
|
| 32 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
| 33 |
+
interpreter.invoke()
|
| 34 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
| 35 |
+
predicted_class = np.argmax(output_data)
|
| 36 |
+
confidence = np.max(output_data)
|
| 37 |
+
return class_names[predicted_class], confidence
|
| 38 |
+
|
| 39 |
+
# Streamlit UI
|
| 40 |
+
st.title("🌾 Crop Disease Prediction")
|
| 41 |
+
st.write("Upload an image of a crop leaf, and the app will predict the disease (if any).")
|
| 42 |
+
|
| 43 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "png", "jpeg"])
|
| 44 |
+
|
| 45 |
+
if uploaded_file is not None:
|
| 46 |
+
# Display the uploaded image
|
| 47 |
+
image = Image.open(uploaded_file)
|
| 48 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 49 |
+
|
| 50 |
+
st.write("Processing...")
|
| 51 |
+
|
| 52 |
+
# Perform prediction
|
| 53 |
+
predicted_class, confidence = predict(image)
|
| 54 |
+
st.write(f"**Prediction:** {predicted_class}")
|
| 55 |
+
st.write(f"**Confidence:** {confidence:.2f}")
|