Spaces:
Configuration error
Configuration error
import streamlit as st | |
import cv2 | |
import requests | |
import base64 | |
import tempfile | |
import os | |
import time | |
from typing import Generator, Tuple | |
# -------------------------- | |
# Configuration | |
# -------------------------- | |
API_KEY = os.getenv("GEMINI_API_KEY") # Fetch API key from Hugging Face secrets | |
API_URL = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key={API_KEY}" | |
SYSTEM_PROMPT = ''' | |
You are a next-generation AI-driven military surveillance officer... | |
(Same as before) | |
''' | |
# -------------------------- | |
# Gemini API Client | |
# -------------------------- | |
class GeminiClient: | |
def __init__(self, api_key: str, api_url: str): | |
self.api_key = api_key | |
self.api_url = api_url | |
self.session = requests.Session() | |
self.timeout = 30 | |
def analyze_frame(self, frame_b64: str, timestamp: int) -> str: | |
"""Send frame to Gemini API for analysis.""" | |
payload = { | |
"contents": [{ | |
"parts": [ | |
{"text": f"Analyze this battlefield image from {timestamp} seconds:"}, | |
{"inline_data": {"mime_type": "image/jpeg", "data": frame_b64}} | |
] | |
}], | |
"systemInstruction": { | |
"parts": [{"text": SYSTEM_PROMPT}] | |
} | |
} | |
try: | |
response = self.session.post( | |
self.api_url, | |
json=payload, | |
timeout=self.timeout, | |
headers={"Content-Type": "application/json"} | |
) | |
response.raise_for_status() | |
return self._parse_response(response.json()) | |
except requests.exceptions.RequestException as e: | |
return f"Analysis error: {str(e)}" | |
def _parse_response(response: dict) -> str: | |
"""Extract response text from Gemini API response.""" | |
try: | |
return response["candidates"][0]["content"]["parts"][0]["text"] | |
except (KeyError, IndexError): | |
return "No analysis available" | |
# -------------------------- | |
# Helper Functions | |
# -------------------------- | |
def frame_to_base64(frame): | |
"""Convert an image frame to base64 format.""" | |
_, buffer = cv2.imencode(".jpg", frame) | |
return base64.b64encode(buffer).decode("utf-8") | |
def extract_video_frame(video_path, timestamp): | |
"""Extract a frame at a specific timestamp from the video.""" | |
cap = cv2.VideoCapture(video_path) | |
cap.set(cv2.CAP_PROP_POS_MSEC, timestamp * 1000) | |
success, frame = cap.read() | |
cap.release() | |
return frame if success else None | |
def download_video(video_url): | |
"""Download video from URL to a temporary file.""" | |
try: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file: | |
response = requests.get(video_url, stream=True, timeout=30) | |
response.raise_for_status() | |
for chunk in response.iter_content(chunk_size=8192): | |
temp_file.write(chunk) | |
return temp_file.name | |
except Exception as e: | |
st.error(f"Video download failed: {str(e)}") | |
return None | |
# -------------------------- | |
# Streamlit App | |
# -------------------------- | |
st.title("π₯ Military Surveillance AI") | |
st.write("Upload a battlefield surveillance video to analyze.") | |
video_url = st.text_input("Enter Video URL:") | |
if st.button("Analyze Video") and video_url: | |
st.info("Downloading video...") | |
video_path = download_video(video_url) | |
if video_path: | |
client = GeminiClient(API_KEY, API_URL) | |
st.success("Video downloaded successfully!") | |
st.info("Processing video and analyzing frames...") | |
log = [] | |
# Extract frames and analyze | |
for timestamp in range(10, 40, 10): # Analyze at 10s, 20s, 30s | |
frame = extract_video_frame(video_path, timestamp) | |
if frame is None: | |
log.append(f"[{timestamp}s] Frame extraction failed β") | |
continue | |
analysis = client.analyze_frame(frame_to_base64(frame), timestamp) | |
log.append(f"[{timestamp}s] {analysis}") | |
st.write(f"### Timestamp: {timestamp}s") | |
st.image(frame, caption=f"Frame at {timestamp}s", use_column_width=True) | |
st.write(analysis) | |
time.sleep(2) # Simulate processing delay | |
st.success("Analysis complete! β ") | |
st.text_area("Summary of Analysis:", "\n".join(log), height=200) | |