rajsecrets0 commited on
Commit
769d999
Β·
verified Β·
1 Parent(s): 0dd4b74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -62
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import streamlit as st
2
  import pandas as pd
3
  import requests
4
- import csv
5
 
6
  # Define your API key and endpoint
7
  api_key = 'AIzaSyAQ4dXlOkF8rPC21f6omTS4p6v-uJ2vVIg'
@@ -37,67 +37,87 @@ def analyze_sentiment(text):
37
  st.error(f"Request failed with status code {response.status_code}: {response.text}")
38
  return None
39
 
40
- def process_file(file):
41
  """
42
- Process the uploaded file, analyze sentiment for all comments, and display results.
43
  """
44
- file_text = file.read().decode('utf-8')
45
- sentiment_result = analyze_sentiment(file_text)
46
- if sentiment_result:
47
- response_text = sentiment_result.get('candidates', [{}])[0].get('content', {}).get('parts', [{}])[0].get('text', '').strip()
 
 
 
 
 
 
 
 
 
 
 
48
 
49
- # Parse comments and sentiments
50
- results = []
51
- lines = response_text.split('\n')
52
- comment = None
53
- sentiment = None
54
- for line in lines:
55
- if line.startswith("Comment:"):
56
- comment = line.replace("Comment:", "").strip()
57
- elif line.startswith("Sentiment:"):
58
- sentiment = line.replace("Sentiment:", "").strip()
59
- if comment and sentiment:
60
- results.append((comment, sentiment))
61
- comment = None
62
- sentiment = None
63
 
64
- # Display results
65
- df = pd.DataFrame(results, columns=['Comment/Prompt', 'Sentiment'])
66
- st.write("### Predicted Sentiments")
67
- st.dataframe(df)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
- # Sentiment distribution
70
- sentiment_counts = df['Sentiment'].value_counts().reset_index()
71
- sentiment_counts.columns = ['Sentiment', 'Count']
72
- with st.expander("View Sentiment Distribution"):
73
- st.bar_chart(sentiment_counts.set_index('Sentiment'))
74
 
75
- # Suggestions
76
- suggestions = []
77
- current_section = None
78
- for line in lines:
79
- if line.startswith("### Suggestions for Improvement:"):
80
- current_section = "Suggestions for Improvement"
81
- elif current_section and line.startswith("- "):
82
- suggestions.append(line.replace("- ", "").strip())
83
- if suggestions:
84
- st.write("### Suggestions for Improvement")
85
- for suggestion in suggestions:
86
- st.write(f"- {suggestion}")
87
- else:
88
- st.warning("No suggestions available.")
89
 
90
- # CSV download
91
- output_file = 'sentiment_analysis_results.csv'
92
- df.to_csv(output_file, index=False)
93
- st.download_button(
94
- label="Download Results as CSV",
95
- data=open(output_file, 'rb').read(),
96
- file_name=output_file,
97
- mime='text/csv',
98
- )
 
 
 
99
  else:
100
- st.error("Sentiment analysis failed.")
 
 
 
 
 
 
 
 
 
 
101
 
102
  # Streamlit layout
103
  st.set_page_config(page_title="Sentiment Analysis Tool", layout="wide")
@@ -108,9 +128,9 @@ st.write("Analyze customer feedback with sentiment classification and actionable
108
  with st.sidebar:
109
  st.header("Instructions πŸ“„")
110
  st.write("""
111
- 1. Upload a CSV file containing customer feedback in the main area.
112
  2. Analyze real-time feedback using the text input box.
113
- 3. Download sentiment analysis results as a CSV file.
114
  """)
115
  st.write("---")
116
  st.header("About")
@@ -120,11 +140,27 @@ with st.sidebar:
120
  tab1, tab2 = st.tabs(["πŸ“ File Analysis", "✍️ Real-Time Feedback"])
121
 
122
  with tab1:
123
- st.write("### Upload a CSV file for batch sentiment analysis:")
124
- uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
125
- if uploaded_file is not None:
126
- with st.spinner("Processing file..."):
127
- process_file(uploaded_file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
  with tab2:
130
  st.write("### Enter your feedback for real-time analysis:")
@@ -146,4 +182,4 @@ with tab2:
146
  else:
147
  st.warning(f"Sentiment: **Unknown** πŸ€”")
148
  else:
149
- st.error("Sentiment analysis failed.")
 
1
  import streamlit as st
2
  import pandas as pd
3
  import requests
4
+ import json
5
 
6
  # Define your API key and endpoint
7
  api_key = 'AIzaSyAQ4dXlOkF8rPC21f6omTS4p6v-uJ2vVIg'
 
37
  st.error(f"Request failed with status code {response.status_code}: {response.text}")
38
  return None
39
 
40
+ def read_file_content(file, file_type):
41
  """
42
+ Read the entire content of the file based on its type.
43
  """
44
+ if file_type == 'csv':
45
+ df = pd.read_csv(file)
46
+ text = ' '.join(df.apply(lambda x: ' '.join(x.dropna().astype(str)), axis=1))
47
+ elif file_type == 'xlsx':
48
+ df = pd.read_excel(file)
49
+ text = ' '.join(df.apply(lambda x: ' '.join(x.dropna().astype(str)), axis=1))
50
+ elif file_type == 'json':
51
+ df = pd.read_json(file)
52
+ text = ' '.join(df.apply(lambda x: ' '.join(x.dropna().astype(str)), axis=1))
53
+ elif file_type == 'txt' or file_type == 'md':
54
+ text = file.read().decode('utf-8')
55
+ else:
56
+ st.error("Unsupported file type.")
57
+ return None
58
+ return text
59
 
60
+ def process_large_text(text, chunk_size=5000):
61
+ """
62
+ Split large text into smaller chunks for processing.
63
+ """
64
+ chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
65
+ return chunks
 
 
 
 
 
 
 
 
66
 
67
+ def display_sentiment_results(response_text, file_name):
68
+ """
69
+ Display sentiment analysis results for a single file.
70
+ """
71
+ # Parse comments and sentiments
72
+ results = []
73
+ lines = response_text.split('\n')
74
+ comment = None
75
+ sentiment = None
76
+ for line in lines:
77
+ if line.startswith("Comment:"):
78
+ comment = line.replace("Comment:", "").strip()
79
+ elif line.startswith("Sentiment:"):
80
+ sentiment = line.replace("Sentiment:", "").strip()
81
+ if comment and sentiment:
82
+ results.append((comment, sentiment))
83
+ comment = None
84
+ sentiment = None
85
 
86
+ # Display results
87
+ st.write(f"### Sentiment Analysis Results for **{file_name}**")
88
+ df_results = pd.DataFrame(results, columns=['Comment/Prompt', 'Sentiment'])
89
+ st.dataframe(df_results)
 
90
 
91
+ # Sentiment distribution
92
+ sentiment_counts = df_results['Sentiment'].value_counts().reset_index()
93
+ sentiment_counts.columns = ['Sentiment', 'Count']
94
+ with st.expander(f"View Sentiment Distribution for {file_name}"):
95
+ st.bar_chart(sentiment_counts.set_index('Sentiment'))
 
 
 
 
 
 
 
 
 
96
 
97
+ # Suggestions
98
+ suggestions = []
99
+ current_section = None
100
+ for line in lines:
101
+ if line.startswith("### Suggestions for Improvement:"):
102
+ current_section = "Suggestions for Improvement"
103
+ elif current_section and line.startswith("- "):
104
+ suggestions.append(line.replace("- ", "").strip())
105
+ if suggestions:
106
+ st.write("### Suggestions for Improvement")
107
+ for suggestion in suggestions:
108
+ st.write(f"- {suggestion}")
109
  else:
110
+ st.warning("No suggestions available.")
111
+
112
+ # CSV download
113
+ output_file = f"sentiment_analysis_results_{file_name}.csv"
114
+ df_results.to_csv(output_file, index=False)
115
+ st.download_button(
116
+ label=f"Download Results for {file_name} as CSV",
117
+ data=open(output_file, 'rb').read(),
118
+ file_name=output_file,
119
+ mime='text/csv',
120
+ )
121
 
122
  # Streamlit layout
123
  st.set_page_config(page_title="Sentiment Analysis Tool", layout="wide")
 
128
  with st.sidebar:
129
  st.header("Instructions πŸ“„")
130
  st.write("""
131
+ 1. Upload one or more files containing customer feedback in the main area.
132
  2. Analyze real-time feedback using the text input box.
133
+ 3. Download sentiment analysis results as CSV files.
134
  """)
135
  st.write("---")
136
  st.header("About")
 
140
  tab1, tab2 = st.tabs(["πŸ“ File Analysis", "✍️ Real-Time Feedback"])
141
 
142
  with tab1:
143
+ st.write("### Upload one or more files for batch sentiment analysis:")
144
+ uploaded_files = st.file_uploader("Choose files", type=["csv", "xlsx", "json", "txt", "md"], accept_multiple_files=True)
145
+ if uploaded_files:
146
+ for uploaded_file in uploaded_files:
147
+ file_type = uploaded_file.name.split('.')[-1]
148
+ with st.spinner(f"Processing {uploaded_file.name}..."):
149
+ # Read the entire file content
150
+ text = read_file_content(uploaded_file, file_type)
151
+ if text:
152
+ # Process large text in chunks if necessary
153
+ chunks = process_large_text(text)
154
+ combined_results = ""
155
+ for chunk in chunks:
156
+ sentiment_result = analyze_sentiment(chunk)
157
+ if sentiment_result:
158
+ response_text = sentiment_result.get('candidates', [{}])[0].get('content', {}).get('parts', [{}])[0].get('text', '').strip()
159
+ combined_results += response_text + "\n"
160
+ if combined_results:
161
+ display_sentiment_results(combined_results, uploaded_file.name)
162
+ else:
163
+ st.error(f"Sentiment analysis failed for {uploaded_file.name}.")
164
 
165
  with tab2:
166
  st.write("### Enter your feedback for real-time analysis:")
 
182
  else:
183
  st.warning(f"Sentiment: **Unknown** πŸ€”")
184
  else:
185
+ st.error("Sentiment analysis failed.")