Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
import csv
|
5 |
+
|
6 |
+
# Define your API key and endpoint
|
7 |
+
api_key = 'AIzaSyAQ4dXlOkF8rPC21f6omTS4p6v-uJ2vVIg'
|
8 |
+
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash-exp:generateContent"
|
9 |
+
headers = {'Content-Type': 'application/json'}
|
10 |
+
|
11 |
+
# Cache the sentiment analysis function to improve performance
|
12 |
+
@st.cache_data
|
13 |
+
def analyze_sentiment(text):
|
14 |
+
"""
|
15 |
+
Analyze the sentiment of the given text using the Gemini API.
|
16 |
+
"""
|
17 |
+
system_prompt = """
|
18 |
+
You are a Sentiment Analysis Tool (SEA). Analyze the following comments and classify the sentiment of each as positive, neutral, or negative.
|
19 |
+
Return the results in the following format:
|
20 |
+
Comment: <comment>
|
21 |
+
Sentiment: <sentiment>
|
22 |
+
---
|
23 |
+
Additionally, provide actionable insights into customer satisfaction trends in the following format:
|
24 |
+
### Suggestions for Improvement:
|
25 |
+
- <suggestion 1>
|
26 |
+
- <suggestion 2>
|
27 |
+
"""
|
28 |
+
data = {
|
29 |
+
"contents": [{
|
30 |
+
"parts": [{"text": f"{system_prompt}\n\n{text}"}]
|
31 |
+
}]
|
32 |
+
}
|
33 |
+
response = requests.post(url, headers=headers, json=data, params={'key': api_key})
|
34 |
+
if response.status_code == 200:
|
35 |
+
return response.json()
|
36 |
+
else:
|
37 |
+
st.error(f"Request failed with status code {response.status_code}: {response.text}")
|
38 |
+
return None
|
39 |
+
|
40 |
+
def process_file(file):
|
41 |
+
"""
|
42 |
+
Process the uploaded file, analyze sentiment for all comments, and display results.
|
43 |
+
"""
|
44 |
+
file_text = file.read().decode('utf-8')
|
45 |
+
sentiment_result = analyze_sentiment(file_text)
|
46 |
+
if sentiment_result:
|
47 |
+
response_text = sentiment_result.get('candidates', [{}])[0].get('content', {}).get('parts', [{}])[0].get('text', '').strip()
|
48 |
+
|
49 |
+
# Parse comments and sentiments
|
50 |
+
results = []
|
51 |
+
lines = response_text.split('\n')
|
52 |
+
comment = None
|
53 |
+
sentiment = None
|
54 |
+
for line in lines:
|
55 |
+
if line.startswith("Comment:"):
|
56 |
+
comment = line.replace("Comment:", "").strip()
|
57 |
+
elif line.startswith("Sentiment:"):
|
58 |
+
sentiment = line.replace("Sentiment:", "").strip()
|
59 |
+
if comment and sentiment:
|
60 |
+
results.append((comment, sentiment))
|
61 |
+
comment = None
|
62 |
+
sentiment = None
|
63 |
+
|
64 |
+
# Display results
|
65 |
+
df = pd.DataFrame(results, columns=['Comment/Prompt', 'Sentiment'])
|
66 |
+
st.write("### Predicted Sentiments")
|
67 |
+
st.dataframe(df)
|
68 |
+
|
69 |
+
# Sentiment distribution
|
70 |
+
sentiment_counts = df['Sentiment'].value_counts().reset_index()
|
71 |
+
sentiment_counts.columns = ['Sentiment', 'Count']
|
72 |
+
with st.expander("View Sentiment Distribution"):
|
73 |
+
st.bar_chart(sentiment_counts.set_index('Sentiment'))
|
74 |
+
|
75 |
+
# Suggestions
|
76 |
+
suggestions = []
|
77 |
+
current_section = None
|
78 |
+
for line in lines:
|
79 |
+
if line.startswith("### Suggestions for Improvement:"):
|
80 |
+
current_section = "Suggestions for Improvement"
|
81 |
+
elif current_section and line.startswith("- "):
|
82 |
+
suggestions.append(line.replace("- ", "").strip())
|
83 |
+
if suggestions:
|
84 |
+
st.write("### Suggestions for Improvement")
|
85 |
+
for suggestion in suggestions:
|
86 |
+
st.write(f"- {suggestion}")
|
87 |
+
else:
|
88 |
+
st.warning("No suggestions available.")
|
89 |
+
|
90 |
+
# CSV download
|
91 |
+
output_file = 'sentiment_analysis_results.csv'
|
92 |
+
df.to_csv(output_file, index=False)
|
93 |
+
st.download_button(
|
94 |
+
label="Download Results as CSV",
|
95 |
+
data=open(output_file, 'rb').read(),
|
96 |
+
file_name=output_file,
|
97 |
+
mime='text/csv',
|
98 |
+
)
|
99 |
+
else:
|
100 |
+
st.error("Sentiment analysis failed.")
|
101 |
+
|
102 |
+
# Streamlit layout
|
103 |
+
st.set_page_config(page_title="Sentiment Analysis Tool", layout="wide")
|
104 |
+
st.title("Sentiment Analysis Tool (SEA) π¬")
|
105 |
+
st.write("Analyze customer feedback with sentiment classification and actionable insights.")
|
106 |
+
|
107 |
+
# Sidebar for instructions
|
108 |
+
with st.sidebar:
|
109 |
+
st.header("Instructions π")
|
110 |
+
st.write("""
|
111 |
+
1. Upload a CSV file containing customer feedback in the main area.
|
112 |
+
2. Analyze real-time feedback using the text input box.
|
113 |
+
3. Download sentiment analysis results as a CSV file.
|
114 |
+
""")
|
115 |
+
st.write("---")
|
116 |
+
st.header("About")
|
117 |
+
st.write("This app uses the Gemini API for sentiment analysis and provides actionable insights.")
|
118 |
+
|
119 |
+
# Main layout with tabs
|
120 |
+
tab1, tab2 = st.tabs(["π File Analysis", "βοΈ Real-Time Feedback"])
|
121 |
+
|
122 |
+
with tab1:
|
123 |
+
st.write("### Upload a CSV file for batch sentiment analysis:")
|
124 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
125 |
+
if uploaded_file is not None:
|
126 |
+
with st.spinner("Processing file..."):
|
127 |
+
process_file(uploaded_file)
|
128 |
+
|
129 |
+
with tab2:
|
130 |
+
st.write("### Enter your feedback for real-time analysis:")
|
131 |
+
feedback_input = st.text_area("Enter your feedback:", placeholder="Type your feedback here...")
|
132 |
+
if st.button("Analyze Sentiment"):
|
133 |
+
if feedback_input.strip() == "":
|
134 |
+
st.warning("Please enter some feedback to analyze.")
|
135 |
+
else:
|
136 |
+
with st.spinner("Analyzing sentiment..."):
|
137 |
+
sentiment_result = analyze_sentiment(feedback_input)
|
138 |
+
if sentiment_result:
|
139 |
+
sentiment = sentiment_result.get('candidates', [{}])[0].get('content', {}).get('parts', [{}])[0].get('text', '').strip().lower()
|
140 |
+
if "positive" in sentiment:
|
141 |
+
st.success(f"Sentiment: **Positive** π")
|
142 |
+
elif "neutral" in sentiment:
|
143 |
+
st.info(f"Sentiment: **Neutral** π")
|
144 |
+
elif "negative" in sentiment:
|
145 |
+
st.error(f"Sentiment: **Negative** π ")
|
146 |
+
else:
|
147 |
+
st.warning(f"Sentiment: **Unknown** π€")
|
148 |
+
else:
|
149 |
+
st.error("Sentiment analysis failed.")
|