rajsecrets0 commited on
Commit
0849020
Β·
verified Β·
1 Parent(s): 47be2d5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +149 -0
app.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import requests
4
+ import csv
5
+
6
+ # Define your API key and endpoint
7
+ api_key = 'AIzaSyAQ4dXlOkF8rPC21f6omTS4p6v-uJ2vVIg'
8
+ url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash-exp:generateContent"
9
+ headers = {'Content-Type': 'application/json'}
10
+
11
+ # Cache the sentiment analysis function to improve performance
12
+ @st.cache_data
13
+ def analyze_sentiment(text):
14
+ """
15
+ Analyze the sentiment of the given text using the Gemini API.
16
+ """
17
+ system_prompt = """
18
+ You are a Sentiment Analysis Tool (SEA). Analyze the following comments and classify the sentiment of each as positive, neutral, or negative.
19
+ Return the results in the following format:
20
+ Comment: <comment>
21
+ Sentiment: <sentiment>
22
+ ---
23
+ Additionally, provide actionable insights into customer satisfaction trends in the following format:
24
+ ### Suggestions for Improvement:
25
+ - <suggestion 1>
26
+ - <suggestion 2>
27
+ """
28
+ data = {
29
+ "contents": [{
30
+ "parts": [{"text": f"{system_prompt}\n\n{text}"}]
31
+ }]
32
+ }
33
+ response = requests.post(url, headers=headers, json=data, params={'key': api_key})
34
+ if response.status_code == 200:
35
+ return response.json()
36
+ else:
37
+ st.error(f"Request failed with status code {response.status_code}: {response.text}")
38
+ return None
39
+
40
+ def process_file(file):
41
+ """
42
+ Process the uploaded file, analyze sentiment for all comments, and display results.
43
+ """
44
+ file_text = file.read().decode('utf-8')
45
+ sentiment_result = analyze_sentiment(file_text)
46
+ if sentiment_result:
47
+ response_text = sentiment_result.get('candidates', [{}])[0].get('content', {}).get('parts', [{}])[0].get('text', '').strip()
48
+
49
+ # Parse comments and sentiments
50
+ results = []
51
+ lines = response_text.split('\n')
52
+ comment = None
53
+ sentiment = None
54
+ for line in lines:
55
+ if line.startswith("Comment:"):
56
+ comment = line.replace("Comment:", "").strip()
57
+ elif line.startswith("Sentiment:"):
58
+ sentiment = line.replace("Sentiment:", "").strip()
59
+ if comment and sentiment:
60
+ results.append((comment, sentiment))
61
+ comment = None
62
+ sentiment = None
63
+
64
+ # Display results
65
+ df = pd.DataFrame(results, columns=['Comment/Prompt', 'Sentiment'])
66
+ st.write("### Predicted Sentiments")
67
+ st.dataframe(df)
68
+
69
+ # Sentiment distribution
70
+ sentiment_counts = df['Sentiment'].value_counts().reset_index()
71
+ sentiment_counts.columns = ['Sentiment', 'Count']
72
+ with st.expander("View Sentiment Distribution"):
73
+ st.bar_chart(sentiment_counts.set_index('Sentiment'))
74
+
75
+ # Suggestions
76
+ suggestions = []
77
+ current_section = None
78
+ for line in lines:
79
+ if line.startswith("### Suggestions for Improvement:"):
80
+ current_section = "Suggestions for Improvement"
81
+ elif current_section and line.startswith("- "):
82
+ suggestions.append(line.replace("- ", "").strip())
83
+ if suggestions:
84
+ st.write("### Suggestions for Improvement")
85
+ for suggestion in suggestions:
86
+ st.write(f"- {suggestion}")
87
+ else:
88
+ st.warning("No suggestions available.")
89
+
90
+ # CSV download
91
+ output_file = 'sentiment_analysis_results.csv'
92
+ df.to_csv(output_file, index=False)
93
+ st.download_button(
94
+ label="Download Results as CSV",
95
+ data=open(output_file, 'rb').read(),
96
+ file_name=output_file,
97
+ mime='text/csv',
98
+ )
99
+ else:
100
+ st.error("Sentiment analysis failed.")
101
+
102
+ # Streamlit layout
103
+ st.set_page_config(page_title="Sentiment Analysis Tool", layout="wide")
104
+ st.title("Sentiment Analysis Tool (SEA) πŸ’¬")
105
+ st.write("Analyze customer feedback with sentiment classification and actionable insights.")
106
+
107
+ # Sidebar for instructions
108
+ with st.sidebar:
109
+ st.header("Instructions πŸ“„")
110
+ st.write("""
111
+ 1. Upload a CSV file containing customer feedback in the main area.
112
+ 2. Analyze real-time feedback using the text input box.
113
+ 3. Download sentiment analysis results as a CSV file.
114
+ """)
115
+ st.write("---")
116
+ st.header("About")
117
+ st.write("This app uses the Gemini API for sentiment analysis and provides actionable insights.")
118
+
119
+ # Main layout with tabs
120
+ tab1, tab2 = st.tabs(["πŸ“ File Analysis", "✍️ Real-Time Feedback"])
121
+
122
+ with tab1:
123
+ st.write("### Upload a CSV file for batch sentiment analysis:")
124
+ uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
125
+ if uploaded_file is not None:
126
+ with st.spinner("Processing file..."):
127
+ process_file(uploaded_file)
128
+
129
+ with tab2:
130
+ st.write("### Enter your feedback for real-time analysis:")
131
+ feedback_input = st.text_area("Enter your feedback:", placeholder="Type your feedback here...")
132
+ if st.button("Analyze Sentiment"):
133
+ if feedback_input.strip() == "":
134
+ st.warning("Please enter some feedback to analyze.")
135
+ else:
136
+ with st.spinner("Analyzing sentiment..."):
137
+ sentiment_result = analyze_sentiment(feedback_input)
138
+ if sentiment_result:
139
+ sentiment = sentiment_result.get('candidates', [{}])[0].get('content', {}).get('parts', [{}])[0].get('text', '').strip().lower()
140
+ if "positive" in sentiment:
141
+ st.success(f"Sentiment: **Positive** 😊")
142
+ elif "neutral" in sentiment:
143
+ st.info(f"Sentiment: **Neutral** 😐")
144
+ elif "negative" in sentiment:
145
+ st.error(f"Sentiment: **Negative** 😠")
146
+ else:
147
+ st.warning(f"Sentiment: **Unknown** πŸ€”")
148
+ else:
149
+ st.error("Sentiment analysis failed.")