Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,23 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from transformers import BitsAndBytesConfig
|
4 |
|
5 |
-
# Import llama-index and langchain
|
6 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, PromptTemplate
|
7 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
8 |
-
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
9 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from llama_index.embeddings.langchain import LangchainEmbedding
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# ---------------------------
|
14 |
# Configure your LLM and embeddings
|
15 |
# ---------------------------
|
@@ -25,7 +33,7 @@ quantization_config = BitsAndBytesConfig(
|
|
25 |
bnb_4bit_compute_dtype=torch.float16
|
26 |
)
|
27 |
|
28 |
-
# Initialize the HuggingFaceLLM with your model settings
|
29 |
llm = HuggingFaceLLM(
|
30 |
context_window=4096,
|
31 |
max_new_tokens=256,
|
@@ -37,7 +45,8 @@ llm = HuggingFaceLLM(
|
|
37 |
device_map="auto",
|
38 |
model_kwargs={
|
39 |
"torch_dtype": torch.float16,
|
40 |
-
"quantization_config": quantization_config
|
|
|
41 |
}
|
42 |
)
|
43 |
|
@@ -53,8 +62,8 @@ Settings.chunk_size = 1024
|
|
53 |
# ---------------------------
|
54 |
# Load documents from repository
|
55 |
# ---------------------------
|
56 |
-
|
57 |
-
|
58 |
try:
|
59 |
documents = SimpleDirectoryReader(DATA_DIR).load_data()
|
60 |
except Exception as e:
|
@@ -63,20 +72,21 @@ except Exception as e:
|
|
63 |
|
64 |
if not documents:
|
65 |
st.warning("No documents found in the data folder. Please add your documents and redeploy.")
|
|
|
66 |
else:
|
67 |
-
# Create the vector store index
|
68 |
index = VectorStoreIndex.from_documents(documents)
|
69 |
query_engine = index.as_query_engine()
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
from transformers import BitsAndBytesConfig
|
5 |
|
6 |
+
# Import necessary modules from llama-index and langchain
|
7 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, PromptTemplate
|
8 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
|
|
9 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from llama_index.embeddings.langchain import LangchainEmbedding
|
12 |
|
13 |
+
# ---------------------------
|
14 |
+
# Retrieve Hugging Face Token from Environment Variables
|
15 |
+
# ---------------------------
|
16 |
+
hf_token = os.getenv("HF_TOKEN")
|
17 |
+
if hf_token is None:
|
18 |
+
st.error("Missing Hugging Face token. Please set HF_TOKEN in your Space secrets.")
|
19 |
+
st.stop()
|
20 |
+
|
21 |
# ---------------------------
|
22 |
# Configure your LLM and embeddings
|
23 |
# ---------------------------
|
|
|
33 |
bnb_4bit_compute_dtype=torch.float16
|
34 |
)
|
35 |
|
36 |
+
# Initialize the HuggingFaceLLM with your model settings and authentication token
|
37 |
llm = HuggingFaceLLM(
|
38 |
context_window=4096,
|
39 |
max_new_tokens=256,
|
|
|
45 |
device_map="auto",
|
46 |
model_kwargs={
|
47 |
"torch_dtype": torch.float16,
|
48 |
+
"quantization_config": quantization_config,
|
49 |
+
"use_auth_token": hf_token # Pass the HF token for gated access
|
50 |
}
|
51 |
)
|
52 |
|
|
|
62 |
# ---------------------------
|
63 |
# Load documents from repository
|
64 |
# ---------------------------
|
65 |
+
DATA_DIR = "data" # Ensure this folder exists in your repository and contains your documents
|
66 |
+
|
67 |
try:
|
68 |
documents = SimpleDirectoryReader(DATA_DIR).load_data()
|
69 |
except Exception as e:
|
|
|
72 |
|
73 |
if not documents:
|
74 |
st.warning("No documents found in the data folder. Please add your documents and redeploy.")
|
75 |
+
st.stop()
|
76 |
else:
|
77 |
+
# Create the vector store index and query engine
|
78 |
index = VectorStoreIndex.from_documents(documents)
|
79 |
query_engine = index.as_query_engine()
|
80 |
|
81 |
+
# ---------------------------
|
82 |
+
# Streamlit Interface
|
83 |
+
# ---------------------------
|
84 |
+
st.title("LLama Index Q&A Assistant")
|
85 |
|
86 |
+
user_query = st.text_input("Enter your question:")
|
87 |
|
88 |
+
if user_query:
|
89 |
+
with st.spinner("Querying..."):
|
90 |
+
response = query_engine.query(user_query)
|
91 |
+
st.markdown("### Response:")
|
92 |
+
st.write(response)
|