Spaces:
Sleeping
Sleeping
File size: 7,868 Bytes
b9022c3 9087ae6 1dc1376 b9022c3 9087ae6 b9022c3 9087ae6 b9022c3 1dc1376 b9022c3 9087ae6 1dc1376 b9022c3 1dc1376 b9022c3 1dc1376 b9022c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import streamlit as st
import base64
import requests
from PIL import Image
from io import BytesIO
import fitz # PyMuPDF
import os
# Configuration - Replace with your API key
GEMINI_API_KEY = st.secrets["GEMINI_API_KEY"]
GEMINI_MODEL = "gemini-2.0-flash"
DOCUMENT_TYPES = [
"Insurance Policies", "Explanation of Benefits (EOBs)",
"Claims (Approved, Denied, or Pending)", "Visit Summaries",
"Test Results (Lab Reports, Imaging Reports)",
"Prescriptions (E-Prescriptions, Handwritten)",
"Discharge Summaries", "Medical Bills", "Payment Statements",
"Pharmacy Receipts", "Prior Authorization Requests",
"Consent Forms", "Referral Letters", "Others"
]
def initialize_session_state():
"""Initialize all session state variables"""
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "processed_doc" not in st.session_state:
st.session_state.processed_doc = None
if "doc_preview" not in st.session_state:
st.session_state.doc_preview = None
def encode_file(uploaded_file):
"""Safely encode different file types to base64"""
try:
file_bytes = uploaded_file.getvalue()
if uploaded_file.type == "application/pdf":
# Convert PDF to image using PyMuPDF
pdf = fitz.open(stream=BytesIO(file_bytes))
page = pdf[0] # Get the first page
pix = page.get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
img_byte_arr = BytesIO()
img.save(img_byte_arr, format='JPEG')
return base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
elif uploaded_file.type in ["image/webp", "image/avif", "image/jpeg", "image/png", "image/gif"]:
img = Image.open(BytesIO(file_bytes))
img_byte_arr = BytesIO()
img.save(img_byte_arr, format='JPEG')
return base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
elif uploaded_file.type == "text/plain":
# Convert TXT to image
text = file_bytes.decode('utf-8')
img = Image.new('RGB', (800, 600), color = (73, 109, 137))
d = ImageDraw.Draw(img)
d.text((10,10), text, fill=(255,255,0))
img_byte_arr = BytesIO()
img.save(img_byte_arr, format='JPEG')
return base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
return base64.b64encode(file_bytes).decode('utf-8')
except Exception as e:
st.error(f"File processing error: {str(e)}")
return None
def query_gemini(prompt, image_b64=None):
"""Handle Gemini API communication"""
url = f"https://generativelanguage.googleapis.com/v1/models/{GEMINI_MODEL}:generateContent?key={GEMINI_API_KEY}"
parts = [{"text": prompt}]
if image_b64:
parts.append({
"inline_data": {
"mime_type": "image/jpeg",
"data": image_b64
}
})
try:
response = requests.post(
url,
json={"contents": [{"parts": parts}]},
headers={"Content-Type": "application/json"},
timeout=30
)
response.raise_for_status()
return response.json()["candidates"][0]["content"]["parts"][0]["text"]
except Exception as e:
st.error(f"API Error: {str(e)}")
return None
def process_document():
"""Handle document processing pipeline"""
uploaded_file = st.session_state.uploaded_file
if not uploaded_file:
return
try:
with st.spinner("Analyzing document..."):
# Convert to base64
image_b64 = encode_file(uploaded_file)
if not image_b64:
return
# Generate preview
if uploaded_file.type == "application/pdf":
pdf = fitz.open(stream=BytesIO(uploaded_file.getvalue()))
page = pdf[0] # Get the first page
pix = page.get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.session_state.doc_preview = img
elif uploaded_file.type in ["image/webp", "image/avif", "image/jpeg", "image/png", "image/gif"]:
st.session_state.doc_preview = Image.open(uploaded_file)
elif uploaded_file.type == "text/plain":
text = uploaded_file.getvalue().decode('utf-8')
img = Image.new('RGB', (800, 600), color = (73, 109, 137))
d = ImageDraw.Draw(img)
d.text((10,10), text, fill=(255,255,0))
st.session_state.doc_preview = img
# Classify document
classify_prompt = f"Classify this healthcare document into one of: {DOCUMENT_TYPES}. Respond only with the category name."
doc_type = query_gemini(classify_prompt, image_b64) or "Others"
# Store results
st.session_state.processed_doc = {
"type": doc_type,
"content": image_b64,
"summary": query_gemini("Create a detailed structured summary of this healthcare document.", image_b64)
}
except Exception as e:
st.error(f"Processing failed: {str(e)}")
st.session_state.processed_doc = None
def handle_chat_query():
"""Process user chat input"""
user_input = st.session_state.chat_input
if not user_input or not st.session_state.processed_doc:
return
prompt = f"""
Document Context:
- Type: {st.session_state.processed_doc['type']}
- Summary: {st.session_state.processed_doc['summary']}
Question: {user_input}
Answer concisely and factually. If unsure, state "Information not found".
"""
with st.spinner("Generating response..."):
response = query_gemini(prompt, st.session_state.processed_doc['content'])
st.session_state.chat_history.append(("user", user_input))
st.session_state.chat_history.append(("assistant", response or "Could not generate response"))
# UI Layout
def main():
st.set_page_config(page_title="Healthcare Document Assistant", layout="wide")
initialize_session_state()
# Sidebar Section
with st.sidebar:
st.header("Document Management")
# Preview above upload button
if st.session_state.doc_preview:
st.subheader("Preview")
st.image(st.session_state.doc_preview, use_container_width=True)
# Upload button
st.file_uploader(
"Upload Document",
type=["pdf", "webp", "avif", "jpg", "jpeg", "png", "gif", "txt"],
key="uploaded_file",
on_change=process_document
)
# Document type below upload button
if st.session_state.processed_doc:
st.divider()
st.subheader("Document Type")
st.markdown(f"**{st.session_state.processed_doc['type']}**")
# Main Content
st.title("Healthcare Document Assistant")
if st.session_state.processed_doc:
# Document Summary
st.subheader("Document Summary")
st.markdown(st.session_state.processed_doc['summary'])
# Chat Interface
st.divider()
st.subheader("Document Q&A")
# Chat history
for role, message in st.session_state.chat_history:
with st.chat_message(role.capitalize()):
st.markdown(message)
# Chat input
st.chat_input(
"Ask about the document...",
key="chat_input",
on_submit=handle_chat_query
)
else:
st.info("Please upload a document to begin analysis")
if __name__ == "__main__":
main() |