import spaces import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("cognitivecomputations/dolphin-2.8-mistral-7b-v02") @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): torch.set_default_device("cuda") tokenizer = AutoTokenizer.from_pretrained( "cognitivecomputations/dolphin-2.8-mistral-7b-v02", trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( "cognitivecomputations/dolphin-2.8-mistral-7b-v02", torch_dtype="auto", load_in_4bit=True, trust_remote_code=True ) history_transformer_format = history + [[message, ""]] system_prompt = f"<|im_start|>system\n{system_message}.<|im_end|>" messages = system_prompt + "".join(["".join(["\n<|im_start|>user\n" + item[0], "<|im_end|>\n<|im_start|>assistant\n" + item[1]]) for item in history_transformer_format]) input_ids = tokenizer([messages], return_tensors="pt").to('cuda') streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, top_p=top_p, top_k=50, temperature=temperature, num_beams=1 ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_message = "" for new_token in streamer: partial_message += new_token if '<|im_end|>' in partial_message: break yield partial_message """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], theme=gr.themes.Soft(primary_hue="green", secondary_hue="indigo", neutral_hue="zinc",font=[gr.themes.GoogleFont("Exo 2"), "ui-sans-serif", "system-ui", "sans-serif"]).set( block_background_fill_dark="*neutral_800" ) ) if __name__ == "__main__": demo.launch()