import spaces import subprocess import gradio as gr from huggingface_hub import hf_hub_download from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent from llama_cpp_agent import MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_index.core.llms import ChatMessage, MessageRole from llama_index.llms.llama_cpp import LlamaCPP from llama_index.llms.llama_cpp.llama_utils import ( messages_to_prompt, completion_to_prompt, ) from llama_index.core.memory import ChatMemoryBuffer subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', env={'CMAKE_ARGS': "-DLLAMA_CUDA=on"}, shell=True) hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.2-GGUF", filename="mistral-7b-instruct-v0.2.Q6_K.gguf", local_dir = "./models") @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # stop_tokens = ["", "[INST]", "[INST] ", "", "[/INST]", "[/INST] "] chat_template = '[INST] ' + system_message # for human, assistant in history: # chat_template += human + ' [/INST] ' + assistant + '[INST]' chat_template += ' ' + message + ' [/INST]' print(chat_template) llm = LlamaCPP( model_path="models/mistral-7b-instruct-v0.2.Q6_K.gguf", temperature=temperature, max_new_tokens=max_tokens, context_window=2048, generate_kwargs={ "top_k": 50, "top_p": top_p, "repeat_penalty": 1.3 }, model_kwargs={ "n_threads": 0, "n_gpu_layers": 33 }, messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, verbose=True, ) response = "" for chunk in llm.stream_complete(message): print(chunk.delta, end="", flush=True) response += str(chunk.delta) yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()