import spaces import gradio as gr from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent from llama_cpp_agent import MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("cognitivecomputations/dolphin-2.8-mistral-7b-v02") llama_model = Llama(r"Meta-Llama-3-8B.Q5_K_M.gguf", n_batch=1024, n_threads=10, n_gpu_layers=33, n_ctx=8192, verbose=False) provider = LlamaCppPythonProvider(llama_model) @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): agent = LlamaCppAgent( provider, system_prompt=system_message, predefined_messages_formatter_type=MessagesFormatterType.MISTRAL, debug_output=True ) settings = provider.get_provider_default_settings() settings.max_tokens = max_tokens settings.temperature = temperature settings.top_p = top_p agent_output = agent.get_chat_response(message, llm_sampling_settings=settings) yield agent_output.strip() """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], theme=gr.themes.Soft(primary_hue="green", secondary_hue="indigo", neutral_hue="zinc",font=[gr.themes.GoogleFont("Exo 2"), "ui-sans-serif", "system-ui", "sans-serif"]).set( block_background_fill_dark="*neutral_800" ) ) if __name__ == "__main__": demo.launch()