import spaces import subprocess import gradio as gr from huggingface_hub import hf_hub_download from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent from llama_cpp_agent import MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider subprocess.run('pip install llama-cpp-python==0.2.75 --no-build-isolation --no-cache-dir --upgrade --only-binary=:all: --extra-index-url=https://abetlen.github.io/llama-cpp-python/whl/cu124', env={'CMAKE_ARGS': "-DLLAMA_CUDA=on"}, shell=True) hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.2-GGUF", filename="mistral-7b-instruct-v0.2.Q6_K.gguf", local_dir = "./models") @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): llama_model = Llama(r"models/mistral-7b-instruct-v0.2.Q6_K.gguf", n_batch=1024, n_threads=0, n_gpu_layers=33, n_ctx=8192, verbose=False) provider = LlamaCppPythonProvider(llama_model) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=MessagesFormatterType.MISTRAL, debug_output=True ) settings = provider.get_provider_default_settings() settings.stream = True settings.max_tokens = max_tokens settings.temperature = temperature settings.top_p = top_p yield agent.get_chat_response(message, llm_sampling_settings=settings) demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()