Update app.py
Browse files
app.py
CHANGED
@@ -60,71 +60,6 @@ def respond(
|
|
60 |
for output in stream:
|
61 |
outputs += output
|
62 |
yield outputs
|
63 |
-
# from llama_cpp import Llama
|
64 |
-
# from llama_cpp_agent import LlamaCppAgent
|
65 |
-
# from llama_cpp_agent import MessagesFormatterType
|
66 |
-
# from llama_cpp_agent.providers import LlamaCppPythonProvider
|
67 |
-
|
68 |
-
# llama_model = Llama(r"models/mistral-7b-instruct-v0.2.Q6_K.gguf", n_batch=1024, n_threads=0, n_gpu_layers=33, n_ctx=8192, verbose=False)
|
69 |
-
|
70 |
-
# provider = LlamaCppPythonProvider(llama_model)
|
71 |
-
|
72 |
-
# agent = LlamaCppAgent(
|
73 |
-
# provider,
|
74 |
-
# system_prompt=f"{system_message}",
|
75 |
-
# predefined_messages_formatter_type=MessagesFormatterType.MISTRAL,
|
76 |
-
# debug_output=True
|
77 |
-
# )
|
78 |
-
|
79 |
-
# settings = provider.get_provider_default_settings()
|
80 |
-
# settings.stream = True
|
81 |
-
# settings.max_tokens = max_tokens
|
82 |
-
# settings.temperature = temperature
|
83 |
-
# settings.top_p = top_p
|
84 |
-
# partial_message = ""
|
85 |
-
# for new_token in agent.get_chat_response(message, llm_sampling_settings=settings, returns_streaming_generator=True):
|
86 |
-
# partial_message += new_token
|
87 |
-
# if '<|im_end|>' in partial_message:
|
88 |
-
# break
|
89 |
-
# yield partial_message
|
90 |
-
|
91 |
-
# stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
|
92 |
-
# chat_template = '<s>[INST] ' + system_message
|
93 |
-
# # for human, assistant in history:
|
94 |
-
# # chat_template += human + ' [/INST] ' + assistant + '</s>[INST]'
|
95 |
-
# chat_template += ' ' + message + ' [/INST]'
|
96 |
-
|
97 |
-
# print(chat_template)
|
98 |
-
|
99 |
-
# llm = LlamaCPP(
|
100 |
-
# model_path="models/mistral-7b-instruct-v0.2.Q6_K.gguf",
|
101 |
-
# temperature=temperature,
|
102 |
-
# max_new_tokens=max_tokens,
|
103 |
-
# context_window=2048,
|
104 |
-
# generate_kwargs={
|
105 |
-
# "top_k": 50,
|
106 |
-
# "top_p": top_p,
|
107 |
-
# "repeat_penalty": 1.3
|
108 |
-
# },
|
109 |
-
# model_kwargs={
|
110 |
-
# "n_threads": 0,
|
111 |
-
# "n_gpu_layers": 33
|
112 |
-
# },
|
113 |
-
# messages_to_prompt=messages_to_prompt,
|
114 |
-
# completion_to_prompt=completion_to_prompt,
|
115 |
-
# verbose=True,
|
116 |
-
# )
|
117 |
-
# # response = ""
|
118 |
-
# # for chunk in llm.stream_complete(message):
|
119 |
-
# # print(chunk.delta, end="", flush=True)
|
120 |
-
# # response += str(chunk.delta)
|
121 |
-
# # yield response
|
122 |
-
# outputs = []
|
123 |
-
# for chunk in llm.stream_complete(message):
|
124 |
-
# outputs.append(chunk.delta)
|
125 |
-
# if chunk.delta in stop_tokens:
|
126 |
-
# break
|
127 |
-
# yield "".join(outputs)
|
128 |
|
129 |
demo = gr.ChatInterface(
|
130 |
respond,
|
|
|
60 |
for output in stream:
|
61 |
outputs += output
|
62 |
yield outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
demo = gr.ChatInterface(
|
65 |
respond,
|