import spaces | |
import subprocess | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
# from llama_index.core.llms import ChatMessage, MessageRole | |
# from llama_index.llms.llama_cpp import LlamaCPP | |
# from llama_index.llms.llama_cpp.llama_utils import ( | |
# messages_to_prompt, | |
# completion_to_prompt, | |
# ) | |
# from llama_index.core.memory import ChatMemoryBuffer | |
subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True) | |
subprocess.run('pip install llama-cpp-agent', shell=True) | |
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.2-GGUF", filename="mistral-7b-instruct-v0.2.Q6_K.gguf", local_dir = "./models") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
from llama_cpp import Llama | |
llm = Llama( | |
model_path="models/mistral-7b-instruct-v0.2.Q6_K.gguf", | |
chat_format="mistral" | |
) | |
stream = llm.create_chat_completion( | |
messages = [ | |
{"role": "system", "content": f"{system_message}"}, | |
{ | |
"role": "user", | |
"content": f"{message}" | |
} | |
], | |
stream=True, | |
) | |
for output in stream: | |
yield json.dumps(output, indent=2) | |
# from llama_cpp import Llama | |
# from llama_cpp_agent import LlamaCppAgent | |
# from llama_cpp_agent import MessagesFormatterType | |
# from llama_cpp_agent.providers import LlamaCppPythonProvider | |
# llama_model = Llama(r"models/mistral-7b-instruct-v0.2.Q6_K.gguf", n_batch=1024, n_threads=0, n_gpu_layers=33, n_ctx=8192, verbose=False) | |
# provider = LlamaCppPythonProvider(llama_model) | |
# agent = LlamaCppAgent( | |
# provider, | |
# system_prompt=f"{system_message}", | |
# predefined_messages_formatter_type=MessagesFormatterType.MISTRAL, | |
# debug_output=True | |
# ) | |
# settings = provider.get_provider_default_settings() | |
# settings.stream = True | |
# settings.max_tokens = max_tokens | |
# settings.temperature = temperature | |
# settings.top_p = top_p | |
# partial_message = "" | |
# for new_token in agent.get_chat_response(message, llm_sampling_settings=settings, returns_streaming_generator=True): | |
# partial_message += new_token | |
# if '<|im_end|>' in partial_message: | |
# break | |
# yield partial_message | |
# stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "] | |
# chat_template = '<s>[INST] ' + system_message | |
# # for human, assistant in history: | |
# # chat_template += human + ' [/INST] ' + assistant + '</s>[INST]' | |
# chat_template += ' ' + message + ' [/INST]' | |
# print(chat_template) | |
# llm = LlamaCPP( | |
# model_path="models/mistral-7b-instruct-v0.2.Q6_K.gguf", | |
# temperature=temperature, | |
# max_new_tokens=max_tokens, | |
# context_window=2048, | |
# generate_kwargs={ | |
# "top_k": 50, | |
# "top_p": top_p, | |
# "repeat_penalty": 1.3 | |
# }, | |
# model_kwargs={ | |
# "n_threads": 0, | |
# "n_gpu_layers": 33 | |
# }, | |
# messages_to_prompt=messages_to_prompt, | |
# completion_to_prompt=completion_to_prompt, | |
# verbose=True, | |
# ) | |
# # response = "" | |
# # for chunk in llm.stream_complete(message): | |
# # print(chunk.delta, end="", flush=True) | |
# # response += str(chunk.delta) | |
# # yield response | |
# outputs = [] | |
# for chunk in llm.stream_complete(message): | |
# outputs.append(chunk.delta) | |
# if chunk.delta in stop_tokens: | |
# break | |
# yield "".join(outputs) | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |