File size: 2,798 Bytes
21b8ce0 d8a3c53 e2f7d5c d8a3c53 e2f7d5c d8a3c53 21b8ce0 d8a3c53 fa52871 d8a3c53 fa52871 d8a3c53 fa52871 d8a3c53 fa52871 d8a3c53 6d5f110 c83546c 6d5f110 d8a3c53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("cognitivecomputations/dolphin-2.8-mistral-7b-v02")
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
torch.set_default_device("cuda")
tokenizer = AutoTokenizer.from_pretrained(
"cognitivecomputations/dolphin-2.8-mistral-7b-v02",
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
"cognitivecomputations/dolphin-2.8-mistral-7b-v02",
torch_dtype="auto",
load_in_4bit=True,
trust_remote_code=True
)
history_transformer_format = history + [[message, ""]]
system_prompt = f"<|im_start|>system\n{system_message}.<|im_end|>"
messages = system_prompt + "".join(["".join(["\n<|im_start|>user\n" + item[0], "<|im_end|>\n<|im_start|>assistant\n" + item[1]]) for item in history_transformer_format])
input_ids = tokenizer([messages], return_tensors="pt").to('cuda')
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids,
streamer=streamer,
max_new_tokens=max_tokens,
do_sample=True,
top_p=top_p,
top_k=50,
temperature=temperature,
num_beams=1
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
partial_message += new_token
if '<|im_end|>' in partial_message:
break
yield partial_message
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
theme=gr.themes.Soft(primary_hue="green", secondary_hue="indigo", neutral_hue="zinc",font=[gr.themes.GoogleFont("Exo 2"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
block_background_fill_dark="*neutral_800"
)
)
if __name__ == "__main__":
demo.launch() |