File size: 2,776 Bytes
21b8ce0
b5c263a
d8a3c53
606c0ce
 
 
 
 
d8a3c53
ae70ddf
 
 
 
 
 
 
 
00a2173
ec06a49
98758c3
d8a3c53
3b38821
d8a3c53
 
 
 
 
 
 
 
63c66b0
becbc87
92d9ef4
 
ae70ddf
ec06a49
ae70ddf
 
 
 
 
 
7e5587a
ae70ddf
 
 
 
 
 
 
 
 
 
 
 
6c9b3f7
63c66b0
 
 
 
 
 
04095d9
63c66b0
 
 
 
606c0ce
d8a3c53
 
 
606c0ce
d8a3c53
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import spaces
import subprocess
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider

from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.llms.llama_cpp import LlamaCPP
from llama_index.llms.llama_cpp.llama_utils import (
    messages_to_prompt,
    completion_to_prompt,
)
from llama_index.core.memory import ChatMemoryBuffer

subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', env={'CMAKE_ARGS': "-DLLAMA_CUDA=on"}, shell=True)

hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.2-GGUF", filename="mistral-7b-instruct-v0.2.Q6_K.gguf",  local_dir = "./models")

@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
    chat_template = '<s>[INST] ' + system_message
    # for human, assistant in history:
    #     chat_template += human + ' [/INST] ' + assistant + '</s>[INST]'
    chat_template += ' ' + message + ' [/INST]'

    print(chat_template)
    
    llm = LlamaCPP(
        model_path="models/mistral-7b-instruct-v0.2.Q6_K.gguf",
        temperature=temperature,
        max_new_tokens=max_tokens,
        context_window=2048,
        generate_kwargs={
            "top_k": 50,
            "top_p": top_p,
            "repeat_penalty": 1.3
        },
        model_kwargs={
            "n_threads": 0,
            "n_gpu_layers": 33
        },
        messages_to_prompt=messages_to_prompt,
        completion_to_prompt=completion_to_prompt,
        verbose=True,
    )
    # response = ""
    # for chunk in llm.stream_complete(message):
    #     print(chunk.delta, end="", flush=True)
    #     response += str(chunk.delta)
    #     yield response
    outputs = []
    for chunk in llm.stream_complete(message):
        outputs.append(chunk.delta)
        if chunk.delta in stop_tokens:
            break
        yield "".join(outputs)

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a helpful assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()