File size: 7,810 Bytes
21b8ce0 13e498a b5c263a d8a3c53 606c0ce 40afde6 7418606 2cd3649 ec06a49 0e76b02 d8a3c53 69a7f00 70b9f60 69a7f00 70b9f60 75cbc5e ed82b9d 69a7f00 75cbc5e 2110ec0 75cbc5e 2110ec0 79f3ba6 69a7f00 0e76b02 c6ac795 0e76b02 3b38821 d8a3c53 0824852 df6c9eb d8a3c53 40afde6 cf6a52f ac70b49 777a931 12a9e25 0e76b02 8e6bf26 ac7a09d 0824852 88b5cb0 888ea87 5c89384 d1f8024 8e6bf26 5c89384 cf6a52f 11987d3 0e76b02 cf6a52f 8e6bf26 cf6a52f 5c89384 e9aaf81 5c89384 cf6a52f ac70b49 777a931 ac70b49 777a931 cf6a52f 0e76b02 cf6a52f 559c9c0 8e6bf26 b9838b1 559c9c0 606c0ce 532ca99 d8a3c53 606c0ce 0824852 d8a3c53 0824852 d8a3c53 0e76b02 e1f9354 0e76b02 d8a3c53 6ccc337 15a7813 5eb0b07 5c900a6 ed82b9d 9a1c399 736d872 2110ec0 7c944d3 905a689 f97343d e6201bd 592c790 532ca99 d8a3c53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import spaces
import json
import subprocess
import gradio as gr
from huggingface_hub import hf_hub_download
subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True)
subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True)
hf_hub_download(
repo_id="bartowski/Meta-Llama-3-70B-Instruct-GGUF",
filename="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf",
local_dir = "./models"
)
hf_hub_download(
repo_id="bartowski/Llama-3-8B-Synthia-v3.5-GGUF",
filename="Llama-3-8B-Synthia-v3.5-f16.gguf",
local_dir = "./models"
)
hf_hub_download(
repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF",
filename="Mistral-7B-Instruct-v0.3-f32.gguf",
local_dir = "./models"
)
css = """
.message-row {
justify-content: space-evenly !important;
}
.message-bubble-border {
border-radius: 6px !important;
}
.dark.message-bubble-border {
border-color: #343140 !important;
}
.dark.user {
background: #1e1c26 !important;
}
.dark.assistant.dark, .dark.pending.dark {
background: #16141c !important;
}
"""
def get_messages_formatter_type(model_name):
from llama_cpp_agent import MessagesFormatterType
if "Llama" in model_name:
return MessagesFormatterType.LLAMA_3
elif "Mistral" in model_name:
return MessagesFormatterType.MISTRAL
else:
raise ValueError(f"Unsupported model: {model_name}")
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
model,
):
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
chat_template = get_messages_formatter_type(model)
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_threads=40,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
PLACEHOLDER = """
<div class="container" style="max-width: 600px; margin: 0 auto; padding: 30px; background-color: #fff; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);">
<h1 style="font-size: 28px; margin-bottom: 15px;">llama-cpp-agent: Simplify LLM Interactions</h1>
<p style="font-size: 16px; line-height: 1.5; margin-bottom: 15px;">The llama-cpp-agent framework simplifies interactions with Large Language Models (LLMs), providing an interface for chatting, executing function calls, generating structured output, performing retrieval augmented generation, and processing text using agentic chains with tools.</p>
<p style="font-size: 16px; line-height: 1.5; margin-bottom: 15px;">The framework uses guided sampling to constrain model output to user-defined structures, enabling models not fine-tuned for function calling and JSON output to do so. It is compatible with llama.cpp server, llama-cpp-python and its server, TGI, and vllm servers.</p>
<h2 style="font-size: 22px; margin-bottom: 10px;">Key Features</h2>
<ul style="list-style-type: none; padding: 0;">
<li style="font-size: 16px; line-height: 1.5; margin-bottom: 8px;"><strong>Simple Chat Interface</strong>: Engage in seamless conversations with LLMs.</li>
<li style="font-size: 16px; line-height: 1.5; margin-bottom: 8px;"><strong>Structured Output</strong>: Generate structured output (objects) from LLMs.</li>
<li style="font-size: 16px; line-height: 1.5; margin-bottom: 8px;"><strong>Function Calling</strong>: Execute functions using LLMs.</li>
<li style="font-size: 16px; line-height: 1.5; margin-bottom: 8px;"><strong>RAG</strong>: Perform retrieval augmented generation with colbert reranking.</li>
<li style="font-size: 16px; line-height: 1.5; margin-bottom: 8px;"><strong>Agent Chains</strong>: Process text using agent chains with tools.</li>
<li style="font-size: 16px; line-height: 1.5; margin-bottom: 8px;"><strong>Guided Sampling</strong>: Allows most 7B LLMs to do function calling and structured output.</li>
<li style="font-size: 16px; line-height: 1.5; margin-bottom: 8px;"><strong>Multiple Providers</strong>: Works with various servers and providers.</li>
<li style="font-size: 16px; line-height: 1.5; margin-bottom: 8px;"><strong>Compatibility</strong>: Works with python functions, pydantic tools, llama-index tools, and OpenAI tool schemas.</li>
<li style="font-size: 16px; line-height: 1.5;"><strong>Flexibility</strong>: Suitable for various applications, from casual chatting to specific function executions.</li>
</ul>
</div>
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
gr.Dropdown([
'Meta-Llama-3-70B-Instruct-Q3_K_M.gguf',
'Llama-3-8B-Synthia-v3.5-f16.gguf',
'Mistral-7B-Instruct-v0.3-f32.gguf'
],
value="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf",
label="Model"
),
],
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#16141c",
block_background_fill_dark="#16141c",
block_border_width="1px",
block_title_background_fill_dark="#1e1c26",
input_background_fill_dark="#292733",
button_secondary_background_fill_dark="#24212b",
border_color_primary_dark="#343140",
background_fill_secondary_dark="#16141c",
color_accent_soft_dark="transparent"
),
css=css,
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
description="Llama-cpp-agent: Chat multi llm selection",
chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
)
if __name__ == "__main__":
demo.launch() |