File size: 2,152 Bytes
21b8ce0
d8a3c53
ec06a49
 
 
 
d8a3c53
 
 
 
e2f7d5c
ec06a49
 
 
 
d8a3c53
21b8ce0
d8a3c53
 
 
 
 
 
 
 
ec06a49
 
 
 
 
fa52871
d8a3c53
ec06a49
 
 
 
 
 
 
 
d8a3c53
 
 
 
 
 
 
ec06a49
d8a3c53
 
 
 
 
 
 
 
 
 
6d5f110
c83546c
6d5f110
d8a3c53
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import spaces
import gradio as gr
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("cognitivecomputations/dolphin-2.8-mistral-7b-v02")
llama_model = Llama(r"Meta-Llama-3-8B.Q5_K_M.gguf", n_batch=1024, n_threads=10, n_gpu_layers=33, n_ctx=8192, verbose=False)

provider = LlamaCppPythonProvider(llama_model)


@spaces.GPU
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    agent = LlamaCppAgent(
        provider,
        system_prompt=system_message,
        predefined_messages_formatter_type=MessagesFormatterType.MISTRAL,
        debug_output=True
    )

    settings = provider.get_provider_default_settings()

    settings.max_tokens = max_tokens
    settings.temperature = temperature
    settings.top_p = top_p

    agent_output = agent.get_chat_response(message, llm_sampling_settings=settings)
    yield agent_output.strip()

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a helpful assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
    theme=gr.themes.Soft(primary_hue="green", secondary_hue="indigo", neutral_hue="zinc",font=[gr.themes.GoogleFont("Exo 2"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
        block_background_fill_dark="*neutral_800"
    )
)


if __name__ == "__main__":
    demo.launch()