import asyncio import gc import logging import os import pandas as pd import psutil import streamlit as st from PIL import Image from streamlit import components #from streamlit.caching import clear_cache from transformers import AutoModelForSequenceClassification, AutoTokenizer from transformers_interpret import SequenceClassificationExplainer #os.environ["TOKENIZERS_PARALLELISM"] = "false" #logging.basicConfig( # format="%(asctime)s : %(levelname)s : %(message)s", level=logging.INFO #) #def print_memory_usage(): # logging.info(f"RAM memory % used: {psutil.virtual_memory()[2]}") @st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=1) def load_model(model_name): return ( AutoModelForSequenceClassification.from_pretrained(model_name), AutoTokenizer.from_pretrained(model_name), ) print ("before main") st.title("Transformers Interpet Demo App") print ("before main") #image = Image.open("./images/tight@1920x_transparent.png") #st.sidebar.image(image, use_column_width=True) st.sidebar.markdown( "Check out the package on [Github](https://github.com/cdpierse/transformers-interpret)" ) st.info( "Due to limited resources only low memory models are available. Run this [app locally](https://github.com/cdpierse/transformers-interpret-streamlit) to run the full selection of available models. " ) print ("end of total file")