File size: 1,864 Bytes
7a7ebdf
ff39d68
4240a50
ff39d68
 
d250ad6
d02f0ba
 
 
 
 
35b1732
ff39d68
 
 
 
 
 
 
 
d250ad6
 
 
 
ff39d68
d02f0ba
ff39d68
 
0e1f235
c319de9
e670d1c
0e1f235
8d8a54a
0e1f235
 
 
ff39d68
 
 
35b1732
ff39d68
35b1732
ff39d68
a212991
 
d250ad6
564ec1c
 
d250ad6
 
35b1732
d250ad6
ff39d68
0e1f235
f5dc180
c319de9
0e1f235
ff39d68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import gradio as gr
import os

asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")

auth_token = os.environ.get("HF_Token")
tokenizer = AutoTokenizer.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
audit_model = AutoModelForSequenceClassification.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
nlp = pipeline("text-classification", model=audit_model, tokenizer=tokenizer)

def transcribe(audio):
    text = asr(audio)["text"]
    return text

def speech_to_text(speech):
    text = asr(speech)["text"]
    return text

def summarize_text(text):
    stext = summarizer(text)
    return stext

def text_to_sentiment(text):
    sentiment = nlp(text)[0]["label"]
    return sentiment 
    
def ner(text):
    api = gr.Interface.load("dslim/bert-base-NER", src='models')
    print (api)
    spans = api(text)
    print (spans)
    replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
    return replaced_spans    
    
demo = gr.Blocks()

with demo:

    audio_file = gr.inputs.Audio(source="microphone", type="filepath")
    b1 = gr.Button("Recognize Speech") 
    text = gr.Textbox()
    b1.click(speech_to_text, inputs=audio_file, outputs=text)
    
    b2 = gr.Button("Summarize Text")
    stext = gr.Textbox()
    b2.click(summarize_text, inputs=text, outputs=stext)
    
    b3 = gr.Button("Classify Sentiment")
    label = gr.Label()
    b3.click(text_to_sentiment, inputs=stext, outputs=label)
    
    b4 = gr.Button("Extract Companies & Segments")
    replaced_spans = gr.HighlightedText()
    b4.click(ner, inputs=text, outputs=replaced_spans)
    
demo.launch(share=True)