|
import os |
|
from typing import TYPE_CHECKING |
|
|
|
import torch |
|
import yaml |
|
from toolkit.config_modules import GenerateImageConfig, ModelConfig |
|
from PIL import Image |
|
from toolkit.models.base_model import BaseModel |
|
from toolkit.basic import flush |
|
from diffusers import AutoencoderKL |
|
from toolkit.prompt_utils import PromptEmbeds |
|
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler |
|
from toolkit.dequantize import patch_dequantization_on_save |
|
from toolkit.accelerator import unwrap_model |
|
from optimum.quanto import freeze, QTensor |
|
from toolkit.util.quantize import quantize, get_qtype |
|
from transformers import T5TokenizerFast, T5EncoderModel |
|
from .src import FLitePipeline, DiT |
|
|
|
if TYPE_CHECKING: |
|
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO |
|
|
|
scheduler_config = { |
|
"base_image_seq_len": 256, |
|
"base_shift": 0.5, |
|
"max_image_seq_len": 4096, |
|
"max_shift": 1.15, |
|
"num_train_timesteps": 1000, |
|
"shift": 3.0, |
|
"use_dynamic_shifting": True |
|
} |
|
|
|
|
|
class FLiteModel(BaseModel): |
|
arch = "f-lite" |
|
|
|
def __init__( |
|
self, |
|
device, |
|
model_config: ModelConfig, |
|
dtype='bf16', |
|
custom_pipeline=None, |
|
noise_scheduler=None, |
|
**kwargs |
|
): |
|
super().__init__( |
|
device, |
|
model_config, |
|
dtype, |
|
custom_pipeline, |
|
noise_scheduler, |
|
**kwargs |
|
) |
|
self.is_flow_matching = True |
|
self.is_transformer = True |
|
self.target_lora_modules = ['DiT'] |
|
|
|
|
|
@staticmethod |
|
def get_train_scheduler(): |
|
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) |
|
|
|
def get_bucket_divisibility(self): |
|
|
|
return 16 |
|
|
|
def load_model(self): |
|
dtype = self.torch_dtype |
|
|
|
|
|
model_path = self.model_config.name_or_path |
|
|
|
extras_path = self.model_config.extras_name_or_path |
|
|
|
self.print_and_status_update("Loading transformer") |
|
|
|
transformer = DiT.from_pretrained( |
|
model_path, |
|
subfolder="dit_model", |
|
torch_dtype=dtype, |
|
) |
|
|
|
transformer.to(self.quantize_device, dtype=dtype) |
|
|
|
if self.model_config.quantize: |
|
|
|
patch_dequantization_on_save(transformer) |
|
quantization_type = get_qtype(self.model_config.qtype) |
|
self.print_and_status_update("Quantizing transformer") |
|
quantize(transformer, weights=quantization_type, |
|
**self.model_config.quantize_kwargs) |
|
freeze(transformer) |
|
transformer.to(self.device_torch) |
|
else: |
|
transformer.to(self.device_torch, dtype=dtype) |
|
|
|
flush() |
|
|
|
self.print_and_status_update("Loading T5") |
|
tokenizer = T5TokenizerFast.from_pretrained( |
|
extras_path, subfolder="tokenizer", torch_dtype=dtype |
|
) |
|
text_encoder = T5EncoderModel.from_pretrained( |
|
extras_path, subfolder="text_encoder", torch_dtype=dtype |
|
) |
|
text_encoder.to(self.device_torch, dtype=dtype) |
|
flush() |
|
|
|
if self.model_config.quantize_te: |
|
self.print_and_status_update("Quantizing T5") |
|
quantize(text_encoder, weights=get_qtype( |
|
self.model_config.qtype)) |
|
freeze(text_encoder) |
|
flush() |
|
|
|
self.noise_scheduler = FLiteModel.get_train_scheduler() |
|
|
|
self.print_and_status_update("Loading VAE") |
|
vae = AutoencoderKL.from_pretrained( |
|
extras_path, |
|
subfolder="vae", |
|
torch_dtype=dtype |
|
) |
|
vae = vae.to(self.device_torch, dtype=dtype) |
|
|
|
self.print_and_status_update("Making pipe") |
|
|
|
pipe: FLitePipeline = FLitePipeline( |
|
text_encoder=None, |
|
tokenizer=tokenizer, |
|
vae=vae, |
|
dit_model=None, |
|
) |
|
|
|
pipe.text_encoder = text_encoder |
|
pipe.dit_model = transformer |
|
pipe.transformer = transformer |
|
pipe.scheduler = self.noise_scheduler, |
|
|
|
self.print_and_status_update("Preparing Model") |
|
|
|
text_encoder = [pipe.text_encoder] |
|
tokenizer = [pipe.tokenizer] |
|
|
|
pipe.transformer = pipe.transformer.to(self.device_torch) |
|
|
|
flush() |
|
|
|
text_encoder[0].to(self.device_torch) |
|
text_encoder[0].requires_grad_(False) |
|
text_encoder[0].eval() |
|
pipe.transformer = pipe.transformer.to(self.device_torch) |
|
flush() |
|
|
|
|
|
self.vae = vae |
|
self.text_encoder = text_encoder |
|
self.tokenizer = tokenizer |
|
self.model = pipe.transformer |
|
self.pipeline = pipe |
|
self.print_and_status_update("Model Loaded") |
|
|
|
def get_generation_pipeline(self): |
|
scheduler = FLiteModel.get_train_scheduler() |
|
|
|
pipeline = FLitePipeline( |
|
text_encoder=unwrap_model(self.text_encoder[0]), |
|
tokenizer=self.tokenizer[0], |
|
vae=unwrap_model(self.vae), |
|
dit_model=unwrap_model(self.transformer) |
|
) |
|
pipeline.transformer = pipeline.dit_model |
|
pipeline.scheduler = scheduler |
|
|
|
return pipeline |
|
|
|
def generate_single_image( |
|
self, |
|
pipeline: FLitePipeline, |
|
gen_config: GenerateImageConfig, |
|
conditional_embeds: PromptEmbeds, |
|
unconditional_embeds: PromptEmbeds, |
|
generator: torch.Generator, |
|
extra: dict, |
|
): |
|
|
|
extra['negative_prompt_embeds'] = unconditional_embeds.text_embeds |
|
|
|
img = pipeline( |
|
prompt_embeds=conditional_embeds.text_embeds, |
|
negative_prompt_embeds=unconditional_embeds.text_embeds, |
|
height=gen_config.height, |
|
width=gen_config.width, |
|
num_inference_steps=gen_config.num_inference_steps, |
|
guidance_scale=gen_config.guidance_scale, |
|
latents=gen_config.latents, |
|
generator=generator, |
|
).images[0] |
|
return img |
|
|
|
def get_noise_prediction( |
|
self, |
|
latent_model_input: torch.Tensor, |
|
timestep: torch.Tensor, |
|
text_embeddings: PromptEmbeds, |
|
**kwargs |
|
): |
|
cast_dtype = self.unet.dtype |
|
|
|
noise_pred = self.unet( |
|
latent_model_input.to( |
|
self.device_torch, cast_dtype |
|
), |
|
text_embeddings.text_embeds.to( |
|
self.device_torch, cast_dtype |
|
), |
|
timestep / 1000, |
|
) |
|
|
|
if isinstance(noise_pred, QTensor): |
|
noise_pred = noise_pred.dequantize() |
|
|
|
return noise_pred |
|
|
|
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: |
|
if isinstance(prompt, str): |
|
prompts = [prompt] |
|
else: |
|
prompts = prompt |
|
if self.pipeline.text_encoder.device != self.device_torch: |
|
self.pipeline.text_encoder.to(self.device_torch) |
|
|
|
prompt_embeds, negative_embeds = self.pipeline.encode_prompt( |
|
prompt=prompts, |
|
negative_prompt=None, |
|
device=self.text_encoder[0].device, |
|
dtype=self.torch_dtype, |
|
) |
|
|
|
pe = PromptEmbeds(prompt_embeds) |
|
|
|
return pe |
|
|
|
def get_model_has_grad(self): |
|
|
|
return False |
|
|
|
def get_te_has_grad(self): |
|
|
|
return False |
|
|
|
def save_model(self, output_path, meta, save_dtype): |
|
|
|
transformer: DiT = unwrap_model(self.model) |
|
|
|
|
|
transformer: DiT = unwrap_model(self.transformer) |
|
transformer.save_pretrained( |
|
save_directory=os.path.join(output_path, 'dit_model'), |
|
safe_serialization=True, |
|
) |
|
|
|
meta_path = os.path.join(output_path, 'aitk_meta.yaml') |
|
with open(meta_path, 'w') as f: |
|
yaml.dump(meta, f) |
|
|
|
def get_loss_target(self, *args, **kwargs): |
|
noise = kwargs.get('noise') |
|
batch = kwargs.get('batch') |
|
|
|
return (batch.latents - noise).detach() |
|
|
|
def convert_lora_weights_before_save(self, state_dict): |
|
|
|
new_sd = {} |
|
for key, value in state_dict.items(): |
|
new_key = key.replace("transformer.", "diffusion_model.") |
|
new_sd[new_key] = value |
|
return new_sd |
|
|
|
def convert_lora_weights_before_load(self, state_dict): |
|
|
|
new_sd = {} |
|
for key, value in state_dict.items(): |
|
new_key = key.replace("diffusion_model.", "transformer.") |
|
new_sd[new_key] = value |
|
return new_sd |
|
|
|
def get_base_model_version(self): |
|
return "f-lite" |
|
|
|
def get_stepped_pred(self, pred, noise): |
|
|
|
latents = pred + noise |
|
return latents |
|
|