|
import os |
|
from typing import TYPE_CHECKING |
|
|
|
import torch |
|
from toolkit.config_modules import GenerateImageConfig, ModelConfig |
|
from PIL import Image |
|
from toolkit.models.base_model import BaseModel |
|
from toolkit.basic import flush |
|
from diffusers import AutoencoderKL |
|
|
|
from toolkit.prompt_utils import PromptEmbeds |
|
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler |
|
from toolkit.dequantize import patch_dequantization_on_save |
|
from toolkit.accelerator import unwrap_model |
|
from optimum.quanto import freeze, QTensor |
|
from toolkit.util.quantize import quantize, get_qtype |
|
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer |
|
from .pipeline import ChromaPipeline |
|
from einops import rearrange, repeat |
|
import random |
|
import torch.nn.functional as F |
|
from .src.model import Chroma, chroma_params |
|
from safetensors.torch import load_file, save_file |
|
from toolkit.metadata import get_meta_for_safetensors |
|
import huggingface_hub |
|
|
|
if TYPE_CHECKING: |
|
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO |
|
|
|
scheduler_config = { |
|
"base_image_seq_len": 256, |
|
"base_shift": 0.5, |
|
"max_image_seq_len": 4096, |
|
"max_shift": 1.15, |
|
"num_train_timesteps": 1000, |
|
"shift": 3.0, |
|
"use_dynamic_shifting": True |
|
} |
|
|
|
class FakeConfig: |
|
|
|
def __init__(self): |
|
self.attention_head_dim = 128 |
|
self.guidance_embeds = True |
|
self.in_channels = 64 |
|
self.joint_attention_dim = 4096 |
|
self.num_attention_heads = 24 |
|
self.num_layers = 19 |
|
self.num_single_layers = 38 |
|
self.patch_size = 1 |
|
|
|
class FakeCLIP(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.dtype = torch.bfloat16 |
|
self.device = 'cuda' |
|
self.text_model = None |
|
self.tokenizer = None |
|
self.model_max_length = 77 |
|
|
|
def forward(self, *args, **kwargs): |
|
return torch.zeros(1, 1, 1).to(self.device) |
|
|
|
|
|
class ChromaModel(BaseModel): |
|
arch = "chroma" |
|
|
|
def __init__( |
|
self, |
|
device, |
|
model_config: ModelConfig, |
|
dtype='bf16', |
|
custom_pipeline=None, |
|
noise_scheduler=None, |
|
**kwargs |
|
): |
|
super().__init__( |
|
device, |
|
model_config, |
|
dtype, |
|
custom_pipeline, |
|
noise_scheduler, |
|
**kwargs |
|
) |
|
self.is_flow_matching = True |
|
self.is_transformer = True |
|
self.target_lora_modules = ['Chroma'] |
|
|
|
|
|
@staticmethod |
|
def get_train_scheduler(): |
|
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) |
|
|
|
def get_bucket_divisibility(self): |
|
|
|
return 32 |
|
|
|
def load_model(self): |
|
dtype = self.torch_dtype |
|
|
|
|
|
model_path = self.model_config.name_or_path |
|
|
|
if model_path == "lodestones/Chroma": |
|
print("Looking for latest Chroma checkpoint") |
|
|
|
files_list = huggingface_hub.list_repo_files(model_path) |
|
print(files_list) |
|
latest_version = 28 |
|
while True: |
|
if f"chroma-unlocked-v{latest_version}.safetensors" not in files_list: |
|
latest_version -= 1 |
|
break |
|
else: |
|
latest_version += 1 |
|
print(f"Using latest Chroma version: v{latest_version}") |
|
|
|
|
|
model_path = huggingface_hub.hf_hub_download( |
|
repo_id=model_path, |
|
filename=f"chroma-unlocked-v{latest_version}.safetensors", |
|
) |
|
elif model_path.startswith("lodestones/Chroma/v"): |
|
|
|
version = model_path.split("/")[-1].split("v")[-1] |
|
print(f"Using Chroma version: v{version}") |
|
|
|
model_path = huggingface_hub.hf_hub_download( |
|
repo_id='lodestones/Chroma', |
|
filename=f"chroma-unlocked-v{version}.safetensors", |
|
) |
|
else: |
|
|
|
if os.path.exists(model_path): |
|
print(f"Using local model: {model_path}") |
|
else: |
|
raise ValueError(f"Model path {model_path} does not exist") |
|
|
|
|
|
|
|
extras_path = 'ostris/Flex.1-alpha' |
|
|
|
self.print_and_status_update("Loading transformer") |
|
|
|
transformer = Chroma(chroma_params) |
|
|
|
|
|
transformer.dtype = dtype |
|
|
|
chroma_state_dict = load_file(model_path, 'cpu') |
|
|
|
transformer.load_state_dict(chroma_state_dict) |
|
|
|
transformer.to(self.quantize_device, dtype=dtype) |
|
|
|
transformer.config = FakeConfig() |
|
|
|
if self.model_config.quantize: |
|
|
|
patch_dequantization_on_save(transformer) |
|
quantization_type = get_qtype(self.model_config.qtype) |
|
self.print_and_status_update("Quantizing transformer") |
|
quantize(transformer, weights=quantization_type, |
|
**self.model_config.quantize_kwargs) |
|
freeze(transformer) |
|
transformer.to(self.device_torch) |
|
else: |
|
transformer.to(self.device_torch, dtype=dtype) |
|
|
|
flush() |
|
|
|
self.print_and_status_update("Loading T5") |
|
tokenizer_2 = T5TokenizerFast.from_pretrained( |
|
extras_path, subfolder="tokenizer_2", torch_dtype=dtype |
|
) |
|
text_encoder_2 = T5EncoderModel.from_pretrained( |
|
extras_path, subfolder="text_encoder_2", torch_dtype=dtype |
|
) |
|
text_encoder_2.to(self.device_torch, dtype=dtype) |
|
flush() |
|
|
|
if self.model_config.quantize_te: |
|
self.print_and_status_update("Quantizing T5") |
|
quantize(text_encoder_2, weights=get_qtype( |
|
self.model_config.qtype)) |
|
freeze(text_encoder_2) |
|
flush() |
|
|
|
|
|
text_encoder = FakeCLIP() |
|
tokenizer = FakeCLIP() |
|
text_encoder.to(self.device_torch, dtype=dtype) |
|
|
|
self.noise_scheduler = ChromaModel.get_train_scheduler() |
|
|
|
self.print_and_status_update("Loading VAE") |
|
vae = AutoencoderKL.from_pretrained( |
|
extras_path, |
|
subfolder="vae", |
|
torch_dtype=dtype |
|
) |
|
vae = vae.to(self.device_torch, dtype=dtype) |
|
|
|
self.print_and_status_update("Making pipe") |
|
|
|
pipe: ChromaPipeline = ChromaPipeline( |
|
scheduler=self.noise_scheduler, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
text_encoder_2=None, |
|
tokenizer_2=tokenizer_2, |
|
vae=vae, |
|
transformer=None, |
|
) |
|
|
|
pipe.text_encoder_2 = text_encoder_2 |
|
pipe.transformer = transformer |
|
|
|
self.print_and_status_update("Preparing Model") |
|
|
|
text_encoder = [pipe.text_encoder, pipe.text_encoder_2] |
|
tokenizer = [pipe.tokenizer, pipe.tokenizer_2] |
|
|
|
pipe.transformer = pipe.transformer.to(self.device_torch) |
|
|
|
flush() |
|
|
|
text_encoder[0].to(self.device_torch) |
|
text_encoder[0].requires_grad_(False) |
|
text_encoder[0].eval() |
|
text_encoder[1].to(self.device_torch) |
|
text_encoder[1].requires_grad_(False) |
|
text_encoder[1].eval() |
|
pipe.transformer = pipe.transformer.to(self.device_torch) |
|
flush() |
|
|
|
|
|
self.vae = vae |
|
self.text_encoder = text_encoder |
|
self.tokenizer = tokenizer |
|
self.model = pipe.transformer |
|
self.pipeline = pipe |
|
self.print_and_status_update("Model Loaded") |
|
|
|
def get_generation_pipeline(self): |
|
scheduler = ChromaModel.get_train_scheduler() |
|
pipeline = ChromaPipeline( |
|
scheduler=scheduler, |
|
text_encoder=unwrap_model(self.text_encoder[0]), |
|
tokenizer=self.tokenizer[0], |
|
text_encoder_2=unwrap_model(self.text_encoder[1]), |
|
tokenizer_2=self.tokenizer[1], |
|
vae=unwrap_model(self.vae), |
|
transformer=unwrap_model(self.transformer) |
|
) |
|
|
|
|
|
|
|
return pipeline |
|
|
|
def generate_single_image( |
|
self, |
|
pipeline: ChromaPipeline, |
|
gen_config: GenerateImageConfig, |
|
conditional_embeds: PromptEmbeds, |
|
unconditional_embeds: PromptEmbeds, |
|
generator: torch.Generator, |
|
extra: dict, |
|
): |
|
|
|
extra['negative_prompt_embeds'] = unconditional_embeds.text_embeds |
|
extra['negative_prompt_attn_mask'] = unconditional_embeds.attention_mask |
|
|
|
img = pipeline( |
|
prompt_embeds=conditional_embeds.text_embeds, |
|
prompt_attn_mask=conditional_embeds.attention_mask, |
|
height=gen_config.height, |
|
width=gen_config.width, |
|
num_inference_steps=gen_config.num_inference_steps, |
|
guidance_scale=gen_config.guidance_scale, |
|
latents=gen_config.latents, |
|
generator=generator, |
|
**extra |
|
).images[0] |
|
return img |
|
|
|
def get_noise_prediction( |
|
self, |
|
latent_model_input: torch.Tensor, |
|
timestep: torch.Tensor, |
|
text_embeddings: PromptEmbeds, |
|
**kwargs |
|
): |
|
with torch.no_grad(): |
|
bs, c, h, w = latent_model_input.shape |
|
latent_model_input_packed = rearrange( |
|
latent_model_input, |
|
"b c (h ph) (w pw) -> b (h w) (c ph pw)", |
|
ph=2, |
|
pw=2 |
|
) |
|
|
|
img_ids = torch.zeros(h // 2, w // 2, 3) |
|
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] |
|
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] |
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", |
|
b=bs).to(self.device_torch) |
|
|
|
txt_ids = torch.zeros( |
|
bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch) |
|
|
|
guidance = torch.full([1], 0, device=self.device_torch, dtype=torch.float32) |
|
guidance = guidance.expand(latent_model_input_packed.shape[0]) |
|
|
|
cast_dtype = self.unet.dtype |
|
|
|
noise_pred = self.unet( |
|
img=latent_model_input_packed.to( |
|
self.device_torch, cast_dtype |
|
), |
|
img_ids=img_ids, |
|
txt=text_embeddings.text_embeds.to( |
|
self.device_torch, cast_dtype |
|
), |
|
txt_ids=txt_ids, |
|
txt_mask=text_embeddings.attention_mask.to( |
|
self.device_torch, cast_dtype |
|
), |
|
timesteps=timestep / 1000, |
|
guidance=guidance |
|
) |
|
|
|
if isinstance(noise_pred, QTensor): |
|
noise_pred = noise_pred.dequantize() |
|
|
|
noise_pred = rearrange( |
|
noise_pred, |
|
"b (h w) (c ph pw) -> b c (h ph) (w pw)", |
|
h=latent_model_input.shape[2] // 2, |
|
w=latent_model_input.shape[3] // 2, |
|
ph=2, |
|
pw=2, |
|
c=self.vae.config.latent_channels |
|
) |
|
|
|
return noise_pred |
|
|
|
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: |
|
if isinstance(prompt, str): |
|
prompts = [prompt] |
|
else: |
|
prompts = prompt |
|
if self.pipeline.text_encoder.device != self.device_torch: |
|
self.pipeline.text_encoder.to(self.device_torch) |
|
|
|
max_length = 512 |
|
|
|
device = self.text_encoder[1].device |
|
dtype = self.text_encoder[1].dtype |
|
|
|
|
|
text_inputs = self.tokenizer[1]( |
|
prompts, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
|
|
prompt_embeds = self.text_encoder[1](text_input_ids.to(device), output_hidden_states=False)[0] |
|
|
|
dtype = self.text_encoder[1].dtype |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
prompt_attention_mask = text_inputs["attention_mask"] |
|
|
|
pe = PromptEmbeds( |
|
prompt_embeds |
|
) |
|
pe.attention_mask = prompt_attention_mask |
|
return pe |
|
|
|
def get_model_has_grad(self): |
|
|
|
return self.model.final_layer.linear.weight.requires_grad |
|
|
|
def get_te_has_grad(self): |
|
|
|
return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad |
|
|
|
def save_model(self, output_path, meta, save_dtype): |
|
|
|
transformer: Chroma = unwrap_model(self.model) |
|
state_dict = transformer.state_dict() |
|
save_dict = {} |
|
for k, v in state_dict.items(): |
|
if isinstance(v, QTensor): |
|
v = v.dequantize() |
|
save_dict[k] = v.clone().to('cpu', dtype=save_dtype) |
|
|
|
meta = get_meta_for_safetensors(meta, name='chroma') |
|
save_file(save_dict, output_path, metadata=meta) |
|
|
|
def get_loss_target(self, *args, **kwargs): |
|
noise = kwargs.get('noise') |
|
batch = kwargs.get('batch') |
|
return (noise - batch.latents).detach() |
|
|
|
def convert_lora_weights_before_save(self, state_dict): |
|
|
|
new_sd = {} |
|
for key, value in state_dict.items(): |
|
new_key = key.replace("transformer.", "diffusion_model.") |
|
new_sd[new_key] = value |
|
return new_sd |
|
|
|
def convert_lora_weights_before_load(self, state_dict): |
|
|
|
new_sd = {} |
|
for key, value in state_dict.items(): |
|
new_key = key.replace("diffusion_model.", "transformer.") |
|
new_sd[new_key] = value |
|
return new_sd |
|
|
|
def get_base_model_version(self): |
|
return "chroma" |
|
|